首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
大气科学   1篇
地球物理   7篇
地质学   9篇
天文学   2篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  1993年   1篇
  1981年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Vishal  V.  Siddique  T.  Purohit  Rohan  Phophliya  Mohit K.  Pradhan  S. P. 《Natural Hazards》2017,85(1):487-503

A massive disaster occurred in June 2013 in Kedarnath, India, due to cloudburst and extremely heavy rain along the Chorabari glacier. The resulting flash floods further aggravated the instability of natural and hill cut slopes at different places on the downstream side. The village Rambara that existed in close proximity of Kedarnath was swept away under flow of debris and water. The immediate surrounding area, which housed over a hundred and fifty shops and hotels, was completely washed away leaving no trace of civilization. This calamity in Uttarakhand is considered as India’s worst natural disasters after the tsunami in December 2004. On the downstream of the affected areas lie other pilgrim destinations that witness innumerable footfalls every year. Investigation of the health of the slopes on the routes to these destinations is therefore very important to ensure minimal damage to humans and machinery. The Himalayan terrain is a tectonically active mountain belt, having a large number of unstable natural and road cut slopes. Such slopes with rugged topography lie in the high seismic vulnerability zone. Further, the instability is aggravated by natural and anthropogenic activities increasing at a rapid and uncontrollable rate. In the light of the Kedarnath tragedy, more advanced research is being conducted along the National Highways to monitor and prevent slope/structure failures. This study was conducted to evaluate the hazard potential along National Highway-58, near Saknidhar village of Devprayag district by analysing rockfall using hazard rating systems and numerical simulation. Rockfall hazard rating systems were applied to evaluate the conditions of the slopes and to identify the associated risks. Based on the field and laboratory analyses, the parameters required for numerical models were determined. The bounce height, roll-out distance, kinetic energy and speed of the detached blocks were determined by using a competent rockfall simulator. The results obtained were used to identify rockfall risk in the region. Optimization strategies were applied during investigation by modifying the slope angle, ditch width and ditch angle to assess the possibility of a hazard to occur in different scenarios. The simulation studies revealed that an increasing slope angle could significantly increase the kinetic energy of the rock blocks. However, an increase in the ditch angle and the ditch width reduces the energy of moving blocks. The maximum bounce height above the slope varied from 0.003 m to 0.8 m for 10-kg blocks, whereas the maximum velocity and the maximum kinetic energy under such circumstances were 7.882 m/s and 379.89 J, respectively. The barrier capacity was found to be 233.18 J for 10-kg falling blocks at a height of 10.02 m. From the optimization studies, it was found that the risk can be reduced by up to 13 % if the slope of 70° has a ditch angle of 15° while on a flat ditch, the maximum risk will be at an angle of 65°. If the ditch angle is increased, the vertical component of the falling blocks is more effective than that in case of a flat ditch. These optimization studies lay foundation for advanced research for mitigation of rockfall hazards in similar potential areas.

  相似文献   
2.
Instrumental neutron activation analysis was used to determine nine rare earth elements (REE), Sc and five high field‐strength elements (HFSE) in the Multani Mitti (MM) clay. Chondrite‐normalised rare earth element patterns for the MM clay compared with those for the Post‐Archaean Australian Shale (PAAS), Upper Continental Crust (UCC) and North American Shale Composite (NASC) showed enrichment of light REEs and depletion of heavy REEs with a slight negative Eu anomaly. The Multani Mitti clay showed close resemblance to PAAS and NASC in its average REE and HFSE contents. Positive correlations between La/Ce, La/Sm, La/Yb, Zr/Hf, Th/U and Th/Ta ratios predict enrichment of LREEs, Zr and Th and depletion of HREEs. A parent source of felsic origin for the MM clay is also endorsed through the high La/Th and low Th/Sc ratios observed.  相似文献   
3.
3D building models of the world exhibit multi-scale properties. Different level-of-details (LoDs) are important for different applications. Therefore, generation of multi-scale representation of 3D building models to fulfill the demands of these applications is a generalization problem. In order to generalize 3D buildings, different pieces of information need to be preserved or removed to restrict the amount of data represented on a certain LoD. In this work, a three-step strategy based on simplification, aggregation and reconstruction of generalized buildings represented in City Geography Markup Language (CityGML) is proposed. The minimum length of edges (threshold value) for removal of amount of data is restricted to generalization specifications of CityGML characterized by differing accuracies and minimal dimensions of objects for each LoD. The main part of this paper is simplification of ground plans. For this purpose, a new approach is proposed to restrict number of edges, curves, and corners of ground plan of 3D building model on a certain LoD. Algorithms for simplification with the aim to derive LoD1 from exterior shells of buildings at LoD3 are implemented and tested on a number of buildings of Putrajaya city. The experiments showed that length of edge as threshold value is directly proportional to the size of generalized models.  相似文献   
4.
Employing Vlasov-Poisson model for nonthermal distributed permeating plasma consisting of electron-positron-ion plasma of our earth’s magnetosphere and the solar wind plasma with some fixed streaming velocity, can drive ion-acoustic waves unstable. The growth rates are computed with respect to the variation in spectral index of the kappa or generalized Lorentzian distribution and streaming velocity of the solar wind. It is found that the growth rate increases with the decrease of spectral index and increases with the streaming velocity of the solar wind. The numerical results are also presented by choosing some suitable parameters.  相似文献   
5.
Since October 1990, 3 weeks after the launch of the Ulysses spacecraft, the dust detector onboard recorded impacts of cosmic dust particles. Besides dust impacts, the detector recorded noise from a variety of sources. So far, a very rigid scheme had been applied to eliminate noise from impact data. The data labeled “big” dust impacts previously led to the identification of interstellar dust and of dust streams from Jupiter. The analysis presented here is concerned with data of signals of small amplitudes which are strongly contaminated by noise. Impacts identified in this data set are called “small” impacts. It is shown that dust impacts can be clearly distinguished from noise for most of the events due to the multi-coincidence characteristics of the instrument. 516 “small” impacts have been identified. For an additional 119 events, strong arguments can be given that they are probably small dust impacts. Thereby, the total number of dust impacts increases from 333 to 968 in the time period from 28 October 1990 to 31 December 1992. This increase permits a better statistical analysis, especially of the Jupiter dust streams which consist mostly of small and fast particles. Additional dust streams have been identified between the already known streams before and after Jupiter flyby. The dependence of the deflection from the Jupiter direction, the stream intensity and width on Jupiter distance support the assertion that they have been emitted from the Jovian system. The masses of the 635 “small” dust particles range from 6 × 10−17 to 3 × 10−10 g with a mean value of 1 × 10−12 g, which compares to a range from 1 × 10−16 to 4 × 10−9 g with a mean value of 2 × 10−11 g for the previously identified 333 “big” dust particles.  相似文献   
6.
Slope stability of mine slopes is often associated with safety and economics during excavation. Sandstone is excavated from Rasulpur area of Fatehpur Sikri in Uttar Pradesh for the purpose of crushed, decorative and dimension stones. In the present paper an attempt has been made to characterize the rock slope faces into different stability classes. Characterization is based on geological and geotechnical parameters recorded on the outcrop during field investigation and supplemented by geomechanical properties by the laboratory test for strength of the rock intact. SMR Geomechanics classification is used to identify the stability class and remedial measures are also suggested to reduce any possible hazard. Kinematic analysis of slope was also investigated to determine the probability of any possible structurally controlled failure. On the basis of SMR Geomechanics calculations slope under investigation lies under good stability class i.e. 2a and 2b. Installation of nets during excavation can be done and for better safety spot and systematic rock bolting can be done. Kinematic study reveals that toppling failures may occur, special care must be given to the joint set which can trigger toppling failure.  相似文献   
7.
Rock mass characterization of Utari dam in Lalitpur district of Uttar Pradesh was done to identify different stability classes of rock mass. For better stability of Utari dam, foundation conditions were carefully studied by detailed field investigations of the site supplemented by laboratory tests. During feasibility and preliminary stages, rock mass characterization of slopes was conducted to identify the vulnerable zones of failure. Rock mass characterization was done by compilation of information obtained from intact rock as well as from rock mass to determine its grade and long term slope stability of the site. On the basis of Rock Mass Rating (RMR) and Geological Strength Index (GSI) slope stability is identified which lies under good quality rock mass. Kinematic analysis was conducted to find out the probability for different types of structurally controlled slope failure. Microscopic analyses were conducted to identify the degree of chemical alteration of feldspar. Clay formation by sericitization along joint planes is harmful for the stability of dam structure. Remedial measures must be taken to reduce the extent of chemical alteration. Granitoids at dam site forms a compact and stable foundation consisting of four sets of joints in which two sets were prominent which are dipping on the upstream side of the dam which reveals good condition on the dam site as leakage from reservoir will be minimum and least up-thrust on the dam structure.  相似文献   
8.
We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (k OH) because of their great abundance and their relatively fast reaction rates with OH.  相似文献   
9.
10.
Trihalomethanes (THMs) are the most abundant disinfection byproducts (DBPs) of the chlorination disinfection. THMs speciation and their geospatial distribution were examined in 58 locations throughout the water distribution network of Karachi city. THMs (CHCl3, CHCl2Br, CHClBr2 and CHBr3) and physico-chemical parameters (pH, TDS, DO, Residual chlorine, temperature and TOC) were determined. CHCl3 was the major THM found in all water samples of 58 locations, which accounted for 91.69 % of the total THMS followed by CHCl2Br (5.69 %), CHClBr2 (1.78 %) and CHBr3 (0.85 %). Total THMs level exceed the maximum contamination level of WHO and USEPA at some locations. Varying nature of correlation from high to low was found within THMs and among the physico-chemical parameters. GIS linked geospatial analysis revealed the association of THMs level with demographical and geological based variations from east to west of Karachi city. Continuous monitoring program and legislation for the contaminant levels were suggested to avoid adverse public health impact of THMs in drinking water supplies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号