首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文研究了盐场海芽孢杆菌(Marinibacilluscampisalis)与大洋铁锰结核的相互作用过程,以及海洋微生物在铁锰结核形成中的作用。实验选取从深海沉积物中分离培养的盐场海芽孢杆菌(Marinibacillus campisalis)和大洋铁锰结核样品进行相互作用实验,设置有菌组和无菌组,培养过程中间隔取样分析。运用X射线荧光光谱(XRF)分析测定大洋铁锰结核元素组成,通过电感耦合等离子体发射光谱(ICP-OES)和电感耦合等离子体质谱(ICP-MS)测定反应过程中Fe、Mn、Co、Ni、Cu等离子浓度的变化,通过透射电镜(TEM)、扫描电镜(SEM)和能谱仪(EDS)观察并分析微生物表面情况,利用X射线衍射(XRD)分析手段测定铁锰结核矿物组成的变化。实验进行1天内细菌处于对数生长期,有菌组的Fe、Mn等离子浓度增加; 2—7天内细菌处于稳定期, Fe、Mn等离子浓度有一定程度降低,但总体浓度均大于无菌组的离子浓度,金属离子被吸附在菌体表面,新形成了简单的含Fe化合物和矿物;实验结束后,XRD分析结果显示样品的矿物含量,如菱铁矿、赤铁矿和针铁矿等有轻微程度的增加。研究表明盐场海芽孢杆菌(Marinibacilluscampisalis)能够促进释放铁锰结核中的Fe、Mn等元素,同时对释放出的金属离子又有富集作用,并能够诱导新矿物的形成。本研究为深入了解铁锰结核的生物成因提供了新的依据。  相似文献   

2.
海底铁锰结壳和结核是重要的海底矿产资源,蕴含着丰富的金属元素并且具有巨大的经济价值。本文主要以南海多金属结壳(核)为研究对象,采用X射线粉晶衍射(XRD)、激光拉曼光谱、红外光谱分析(FTIR)以及X射线光电子能谱对铁锰矿物的矿物学和谱学特征进行了系统的分析和研究。粉晶衍射和拉曼光谱分析结果表明,南海多金属结壳的矿物组成为水羟锰矿、石英和长石,结核的矿物组成为钡镁锰矿、水羟锰矿、石英和长石,铁相矿物均为无定形铁氧化物/氢氧化物,并且锰相矿物和铁相矿物的结晶程度均较差。红外光谱分析结果显示多金属结核和结壳中的铁锰矿物具有大量表面羟基,这些含质子表面羟基官能团,可为海水中各成矿元素的络合提供丰富的活性位点。XPS分析表明多金属结核和结壳中铁锰矿物表面以Fe、Mn和O元素为主,其中Fe呈正三价态,Mn以正四、正三价为主,可能还含有少部分正二价态。对比南海多金属结壳(核)与太平海山结壳,南海多金属结壳(核)具有更为显著的表面羟基氧(-OH)含量,而太平洋海山结壳则以晶格氧(O2-)为主,表明太平洋海山结壳铁锰矿物结晶程度较南海多金属结壳(核)高。综合研究表明,在海底铁锰结壳和结核中(氢)氧化锰/铁矿物与海水之间界面效应对金属离子的富集机理主要有:(1)金属离子与矿物表面羟基进行络合反应,形成以配位键相连的羟基络合物,或与表面的质子交换生成稳定的内层络合物;(2)矿物的带电表面与金属离子通过静电作用形成双电层,生成外层络合物;(3)金属离子与矿物结构中的Mn、Fe离子同晶置换而成为结构阳离子。  相似文献   

3.
Trace metal concentrations in sediments of the Eastern Mississippi Bight   总被引:7,自引:0,他引:7  
Sediments collected from 3 onshore-offshore transects (12 stations total) in the Eastern Mississippi Bight at 5 different times during 1987–1988 have been analyzed for total Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sn, Th and Zn. The data show considerable variation both spatially and temporally, largely as a result of natural variability in grain size and mineralogy. Clay-rich samples from deep water were always more metal-rich than sandy samples from shallow areas. Many samples from near the Mississippi River Delta appeared to be enriched in Ba by about a factor of two, probably as a result of contamination from oil well drilling mud, but there were few other indications of pollution influences. Many samples from throughout the area gave Mn/Fe and Cd/Fe ratios a factor of two or more lower than their Mississippi River source material. This shows that biochemical activity in the sediment is capable of solubilizing reducible and adsorbed metals.  相似文献   

4.
The contents of Fe, Mn, Cu, Co, Ni, Pb and Zn in the seaiment associated with manganese nodules from the Northern Central Pacific Ocean and in their acid-soluble fractions were determined and correlations among the elements and between the trace metals and environmental parameters were discussed. It has been found that the contents of Mn, Cu and Ni in the sediment are one order of magnitude higher than those in the common sediment. As shown in the manganese nodules, they may mainly derive from seabed. The contents of all trace metals in the sediment are obviously governed by Fe-and Mn-oxides, organic matter, seawater depth, particle size and Eh. Multi-element correlation equations were developed for all trace metals. The trace metals in acid-soluble fraction of the sediment were also much higher than ihose of common sediment and negatively correlated with water depth, implying the possible influence of carbonate speciation.  相似文献   

5.
Polymetallic/ferro-manganese nodules (Mn-nodules) reach sizes of up to 10 cm in diameter and are abundantly found on the seabed. To date, the origin of Mn-nodules remains unclear, and both abiogenic and biogenic origins have been proposed. In search of evidence for a contribution of microbial processes to the formation of Mn-nodules, we analyzed those spherical nodules which contain a concentrically banded texture in their interior. The Mn-nodules were collected at a depth of 5,152 m from the Clarion-Clipperton Zone. Our high-resolution scanning electron microscopy analyses reveal first published evidence that endolithic microorganisms exist and are arranged in a highly organized manner on plane mineral surfaces within the nodules. These microorganisms are adorned on their surfaces with S-layers, which are indicative for bacteria. Moreover, the data suggest that these S-layers are the crystallization seeds for the mineralization process. We conclude that the mineral material of the Mn-nodule has a biogenic origin, and hope that these data will contribute to the development of biotechnological approaches to concentrate metals from seawater using bacteria in bioreactors.  相似文献   

6.
The thermal phase transformation of the iron-manganese phase of the Pacific Ocean manganese nodules were studied by the differential thermal and X-ray diffraction methods. X-ray powder patterns of the heated samples at the temperature of 600°C to 1000°C show the occurrence of hematite, bixbyite and cubic and tetragonal (Fe, Mn)3O4. Bixbyite produced by the heat treatment of the iron-manganese phase gives an abnormal X-ray pattern in comparison with the standard sample of bixbyite. Cubic (Fe, Mn)3O4 is produced not only by the reaction of bixbyite with hematite over 900°C, but also at the lower temperature, such as 600°C. While, tetragonal (Fe, Mn)3O4 is a reaction product of cubic (Fe, Mn)3O4 with bixbyite over 900°C in the case of manganese rich nodules. The species and quantities of the products after the heat treatment are assumed to be mostly influenced by the relative contents of iron and manganese in the manganese nodule.  相似文献   

7.
Detailed bathymetric surveys from part of the Central Indian Ocean revealed several bathymetric features such as hills, slopes, valleys, and plains. Areas with a local relief of a few to hundreds of meters generally have a high abundance of polymetallic nodules with a patchy distribution. Areas with less relief have lesser abundance but a regular distribution. North-south topographic profiles have a smoother sea floor than the east-west ones. Near the minor faults, the abundance is high. Mn,Ni,Mn/Fe levels are higher in the plain areas, and rough terrains have high Fe,Co and low Mn/Fe levels.  相似文献   

8.
大洋铁锰结核的微生物成矿过程及其研究进展   总被引:1,自引:1,他引:0  
深海铁锰结核作为世界上潜在的巨大金属宝库已成为当今开发海底矿藏的热点,因而深入了解铁锰结核成矿过程成为其开发利用的先决条件。研究发现多金属铁锰结核中的铁锰矿物不仅仅是由单纯的物理作用形成的,同时也包含了海洋生物驱动的生物矿化的过程。本文介绍了运用分子生物学、矿物学和地球化学等多学科的研究方法对大洋中铁锰的生物成矿过程和成矿特征的研究。深海铁锰结核的生长速率缓慢且其生长演化伴随着微生物群落的活动,因此结核的生长过程同时也记录着不同时期微生物群落结构的变化并生成了大量的微生物化石。在铁和锰的生物矿化过程中,细菌可以通过酶促反应氧化Fe(Ⅱ)和Mn(Ⅱ),同时可能伴随生物能量的生成,此外微生物还可以通过非酶促反应的方式促进Fe和Mn的富集沉淀。这些研究表明生物矿化作用在大洋铁锰结核成矿过程中有巨大贡献,对大洋铁锰结核的生物成因过程提供更加全面准确的理解,从而为今后进一步充实大洋铁锰结核的生物矿化理论及其开发利用提供依据。  相似文献   

9.
The ferromanganese concretions spread at the bottom of the shallow northwestern part of the Black Sea are mainly represented by Fe and Mn hydrate nodules on shells and substituted worm tubes. The element composition of these formations was found by the methods of chemical, atomic-absorbtion, neutron activation, and plasmic (ICP-MS) analyses. It is established that the content and the ratio of Fe and Mn in the concretions ranges within considerable limits, which controls the occurrence of several associated iron-free metals and microelements, some which have not been previously studied in the Black Sea concretions.  相似文献   

10.
Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii.Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the α-activity of the ionium and its daughter products. Special methods of counting the α-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4–9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron.Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.  相似文献   

11.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

12.
Manganese nodule distribution is primarily influenced by seafloor topography. Nodule distribution at 479 locations vis‐à‐vis seabed topography is studied by superimposing sampling location on the topographic profile and assigning appropriate domain (hilltop, valley, slope, or plain) for the sampling location. Highest mean abundance is observed at the valleys (6.94 kg /m2), followed by hilltops, slopes, and least on plains. Frequency distributions are regular (Gaussian) on plains, whereas on valleys and hilltops they are irregular (Rayleigh type). Fe and Co content is highest in nodules from hilltops and lowest in those from plains. Conversely, Mn, Cu, and Ni content is highest on plains and least on valleys. Fe: Mn and Co: Mn are negatively correlated in all the domains. Mn and total metal content (Ni + Cu + Co) show direct relationship in all the domains. An inverse relation between nodule abundance and composition is found. Cluster analysis on chemical and abundance data shows two distinct groups in all domains. Abundance and Fe and Co content typically form one group, while all other elements form another group. Genesis of nodules depends on the availability of supply of transition elements to the abyssal environment, maintenance of nodules in the sediment‐water interface, and sedimentation rates.  相似文献   

13.
SEM/probe analyses of two ferromanganese crusts from the Central Indian Basin, formed on basalt substrate, reveal botryoids and cusps. The botryoids composed of δ-MnO2, are enriched in Co, and the cusps and laminations with todorokite are enriched in Ni and Cu. Microstructural and elemental variations, from the ferromanganese crust outer surface to the basalt substrate, probably reflect changes in the accretion or in the source of metals. The major source of the crust metals is the seawater, as indicated by the Mn/Fe ratio of unity and by the microstructures.  相似文献   

14.
The major and minor element compositions of a suite of abyssal sea-floor ferromanganese nodules and associated sediments from the eastern central Pacific have been used to examine inter-element relationships and the mineralogy of the nodules, the relationship between the composition of nodules and their associated sediments and regional variations in composition with respect to likely modes of formation of such deposits. Apart from Mn and Fe, significant proportions of the total Ti, Ca, Mg, K, Ba, Sr, Th and Y and almost all the P, As, Ce, Co, Cu, Mo, Ni, Pb, Zn and Zr are present in the oxide fractions of the nodules. The Mg, Ba, Cu, Mo, Ni and Zn contents are significantly correlated with the Mn content, while Ti, P, As, Pb, Sr, Y and Zr are similarly correlated with the total Fe content.Nodules from the northeastern tropical Pacific have Mn/Fe ratios higher than those in the oxide fractions of their associated sediments, todorokite as the principal Mn phase and relatively high concentrations of minor elements associated with Mn. Nodules from the south central Pacific have Mn/Fe ratios similar to those in the oxide fractions of the associated sediments, δ-MnO2 as the only Mn-phase, and relatively high concentrations of minor elements associated with Fe. There appears to be a smooth gradation in composition in the tropical Pacific between these two end members.The regional compositional variation is interpreted as a reflection of different sources of metals for, and different growth mechanisms of, sea-floor nodules. The oxide precipitate from sea water consists of δ-MnO2, has a relatively low Mn/Fe ratio and minor element contents related to the total Fe and Mn(δ-MnO2) content. The oxide precipitate forming in areas of very low sedimentation as a result of diagenetic remobilisation in the surface sediment consists of todorokite, and has a high Mn/Fe ratio and enhanced metal content in the Mn-(todorokite)phase. Available information on the morphology and compositional variation of individual nodules from the tropical Pacific corroborates these contrasting metal sources and suggests that they can be resolved on the scale of an individual oxide concretion.  相似文献   

15.
Phosphorus and metals bound to organic matter were separated from coastal sediments of Harima Sound in Seto Inland Sea, Japan by extraction with NaOH and fractionated by Sephadex G-25 chromatography. Phosphorus and metals were determined in the eluates by a multi-channel, inductively coupled plasma-atomic emission spectrometer. Phosphorus and Cu, Zn, Fe, Mn, Ni, Cr, Co and Ti bound to organic matter with high molecular weights (OMHMW) (MW ? 5000) were found to be present in the sediments, but no Mo or V were found. The technique provides minimum estimates of the amounts of P and metals bound to organic matter. These organic complexes show surface enrichment in a sediment core (0–20 cm) and their contents decrease with depth. Also, the amounts of eighteen elements, namely: P, Fe, Mn, Zn, Cu, Si, Al, Ti, Pb, Co, Ni, Cr, Mo, V, Na, K, Ca and Mg, in H2O, ammonium acetate at pH 7 and 5, hydrogen peroxide, hydroxylamine hydrochloride and hydrogen fluoric acid soluble fractions have been determined with a selective chemical leaching technique for the 210Pb-dated sediment core sample. Considerable amounts of P (6–19%) and Cu (5–21%) were associated with organic matter, in contrast to other metals such as Fe, Mn, Zn, Ni, Cr, Co and Ti which were associated with sulfide and silicate.  相似文献   

16.
Trace element concentrations (Pb, Cd, Mn, Fe, and Zn) were measured along four surface water transects across the continental shelf off Baja California, to evaluate the magnitude of heavy metal contamination in the coastal waters along the US-Mexican boundary. These initial measurements of trace elements in Mexican neritic waters revealed offshore concentration gradients, with the highest levels in coastal waters with high salinities and nutrient concentrations. There were also longshore gradients, with lower concentrations in the southern locations. Although the relative enrichment of metals detected at nearshore stations along the US-Mexican border appeared to correspond to wastewater discharges in that area, these trace metal enhancements were found to be primarily associated with physical oceanographic processes (upwelling and advection), rather than anthropogenic inputs. This was demonstrated both by metal-nutrient correlations and multivariate statistical analyses. Mass balance calculations also indicated that about 1% of Cd, 9% of Zn, and 29% of Pb were from urban discharges within the area.  相似文献   

17.
The contents of oxyanionic elements (V, Se and Mo) and cationic transition metals (Mn, Fe, Co, Ni, Cu and Zn) in sediments from near-shore to deep-sea environments were measured to clarify factors regulating the distribution of these elements in marine sediments. For cationic transition metals of which contents increase from near-shore to deep-sea environments, the chemical composition of pelagic clays is modeled by a mixture of aluminosilicates having the chemical composition of average shale and Fe–Mn oxides having the chemical composition of associated manganese nodules. The content of V is fairly constant in sediments from near-shore to deep-sea areas. The mixture model of average shale and manganese nodules holds also for V, although most of the V is located in the aluminosilicate lattices. The content of Se in the near-shore sediments is higher and that in the deep-sea sediments is lower than that in average shale. The high content in the near-shore sediments is interpreted as the addition of biogenic materials to aluminosilicates with average shale composition and the low content in deep-sea sediments is explained by oxidative release of Se from aluminosilicates. The content of Mo in sediments increases from near-shore to deep-sea environments. The general distribution of Mo in marine sediments is expressed by the mixture model. An anomalously high content of Mo in a near-shore sediment is attributed to adsorption of molybdate on manganese oxides.  相似文献   

18.
南海铁锰结核(壳)的元素地球化学研究   总被引:1,自引:0,他引:1  
本文利用南海11个铁锰结核(壳)样品的化学分析资料,研究了铁锰结核(壳)中Fe,Mn,Cu,Co,Ni,Pb,Zn,Cr,K,Na,Ca,Mg,Si,P,Al,Ti,Sr,Ba及∑REE的元素地球化学特征。结果表明:(1)铁锰结核(壳)以高Fe,∑REE,低Mn,Cu,Co,Ni等元素为主要特征;(2)铁锰结核(壳)中Fe,Mn间无明显相关,而Fe与∑REE,∑Ce,∑Y呈弱的正相关,Mn与∑REE,∑Ce,∑Y呈明显的正相关,结壳中Fe,Mn与Si,Al,Cu Co Ni呈负相关;(3)结核(壳)中Mn/Fe与Cu/Ni,Ce/La呈负相关,Mn/Fe主要受Mn控制;(4)结核(壳)中Fe,∑REE等元素主要来自南海陆源中酸性岩类的风化、淋滤和沉积。  相似文献   

19.
陈水土  杨慧辉 《台湾海峡》1993,12(4):376-384
根据1987年3月至1988年12月九龙江口,厦门西港海域的调查资料,初步探讨该海域Fe,Mn,Cu,Zn,Ni,Co,Pb,Cd等重金属元素的生物地球化学特性,及其与磷的生物地球化学的关系。结果表明该海域重金属元素的分布主要受九龙江径流的影响。在河水与海水混合过程中,悬浮颗粒态重金属元素发生明显转移,Fe,Mn,Co,Zn等元素自悬浮颗粒物上解吸,Cu可能被吸附,颗粒态重金属元素与颗粒态磷呈良好  相似文献   

20.
Z. Seisuma  I. Kulikova 《Oceanology》2012,52(6):780-784
The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号