首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
4.
Accurate characterization of contaminant mass in zones of low hydraulic conductivity (low k) is essential for site management because this difficult‐to‐treat mass can be a long‐term secondary source. This study developed a protocol for the membrane interface probe (MIP) as a low‐cost, rapid data‐acquisition tool for qualitatively evaluating the location and relative distribution of mass in low‐k zones. MIP operating parameters were varied systematically at high and low concentration locations at a contaminated site to evaluate the impact of the parameters on data quality relative to a detailed adjacent profile of soil concentrations. Evaluation of the relative location of maximum concentrations and the shape of the MIP vs. soil profiles led to a standard operating procedure (SOP) for the MIP to delineate contamination in low‐k zones. This includes recommendations for: (1) preferred detector (ECD for low concentration zones, PID or ECD for higher concentration zones); (2) combining downlogged and uplogged data to reduce carryover; and (3) higher carrier gas flow rate in high concentration zones. Linear regression indicated scatter in all MIP‐to‐soil comparisons, including R2 values using the SOP of 0.32 in the low concentration boring and 0.49 in the high concentration boring. In contrast, a control dataset with soil‐to‐soil correlations from borings 1‐m apart exhibited an R2 of ≥0.88, highlighting the uncertainty in predicting soil concentrations using MIP data. This study demonstrates that the MIP provides lower‐precision contaminant distribution and heterogeneity data compared to more intensive high‐resolution characterization methods. This is consistent with its use as a complementary screening tool.  相似文献   

5.
The performance of one pilot‐scale and two full‐scale membrane bioreactors (MBR) were evaluated based on the control of main operational parameters, composition of microbial community and pathogens concentration in the treated outlet. Plants were designed for 0.75 m3/day (A), 60 m3/day (B) and 30 m3/day (C). Inlet and outlet samples were monitored for chemical oxygen demand (COD), biological oxygen demand, total suspended solids, ammonia nitrogen concentration (NH4–N), nitrate nitrogen concentration, total Kjeldahl nitrogen, total phosphorus and phosphate phosphorus concentration concentrations. Plants showed good COD removal: 91.9% for Plant A, 97.8% for Plant B and 94.2% for Plant C. The targeted nitrogenous ion was NH4–N due to the requirements for outlet limits. NH4–N removal was moderate for Plant A (73.3%) and Plant B (86.1%) and excellent for Plant C (>99%). Excellent phosphorus removal was achieved by Plant A (average outlet concentration was 0.7 mg/L, efficiency 84.7%). Unsatisfactory results for phosphorus removal were achieved at the full‐scale plants due to operational problems. The dependency between the extracellular polymeric substances increase and decreasing mixed liquor volatile suspended solids for both lab and full‐scale plants was confirmed. Soluble microbial product concentrations were reduced by 65–68% after coagulant dosage for Plant A. Outlets from the MBR plants were monitored for the presence of pathogens (thermotolerant coliforms, Escherichia coli, intestinal Enterococci and culturable microorganisms at 22 and 37°C). The treated effluent from Plant A, B and C met Czech national legislation regarding reuse criteria (standards) for environment, irrigation and swimming purposes. Plants B and C were not able to achieve requirements for potable water and personal hygiene quality standards.  相似文献   

6.
The membrane interface probe (MIP) is widely used for the in situ characterization of volatile organic compounds (VOCs) in the subsurface. A main problem using the MIP system is the carry‐over effect of VOCs during the transport from the point of measurement to the detector using a conventional transfer line. This effect results in compound specific retention times, which is shown in disproportionately high measuring signals after the actual penetration of contaminated zones. In consequence, the lower extent of contamination is not clearly identifiable and may be overestimated. The presented field study presents an evaluation of different methods to overcome the carry‐over effect, especially with regard to the required measurement times that are needed to wait for a complete disappearance of the detector signals before forwarding the probe. This was accomplished by comparing data collected with a MIP system with (1) unheated transfer line and (2) a system including a heated transfer line to data collected with a system using (3) a depth‐dependent triggered sampling behind the membrane including two transfer lines. A comparison with analytical results from soil samples gave a good correlation for all three methods. Furthermore, it could be shown that the use of a heated transfer line has a time improvement of 30% compared to an unheated transfer line while the depth dependent triggered sampling using two separate transfer lines yielded a time improvement of over 90%. These results confirm the benefit of the latter method, particularly for the use in highly contaminated sediments.  相似文献   

7.
8.
9.
Ultrafiltration (UF) can remove natural organic matter (NOM) effectively. Moreover, chlorine dioxide (ClO2) has been an alternative disinfectant as it forms fewer disinfection by‐products with NOM than chlorination does. Therefore, combining ClO2 with UF may improve conventional purification processes. In this study, feed water containing humic acid with 4.07 mg/L total organic carbon (TOC) was dosed directly with various amounts of ClO2 (0, 2, 5, 10, and 15 mg/L) before being filtered through a 5‐kDa UF membrane. With a low dose (2 mg/L ClO2), UF removed humic acid effectively, as TOC was not detected in the permeate, and the permeate flux increased to about 80% of the initial permeate flux by cross flow. Moreover, the concentrations of ClO, ClO, and trihalomethanes in the permeate were below the United States Environmental Protection Agency guidelines.  相似文献   

10.
A simple non‐linear control law is proposed for reducing structural responses against seismic excitations. This law defines control force dynamics by one differential equation involving a non‐linear term that restrains the control force amplitude. If non‐linearity is neglected, the control force becomes the force in a Maxwell element, so it is called the non‐linear‐Maxwell‐element‐type (NMW) control force. The NMW control force vs. deformation relation plots hysteretic curves. The basic performance of an SDOF model with the NMW control force is examined for various conditions by numerical analyses. Furthermore, the control law is extended to fit an MDOF structural model, and an application example is shown. The computational results show that the NMW control force efficiently reduces structural responses. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Major earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude events clustered both in time and space. Recent advances of seismic hazard analysis stochastically model aftershock occurrence (given the main event) as a nonhomogeneous Poisson process with rate that decays in time as a negative power law. Risk management in the post‐event emergency phase has to deal with this short‐term seismicity. In fact, because the structural systems of interest might have suffered some damage in the mainshock, possibly worsened by damaging aftershocks, the failure risk may be large until the intensity of the sequence reduces or the structure is repaired. At the state‐of‐the‐art, the quantitative assessment of aftershock risk is aimed at building tagging, that is, to regulate occupancy. The study, on the basis of age‐dependent stochastic processes, derived closed‐form approximations for the aftershock reliability of simple nonevolutionary elastic‐perfectly‐plastic damage‐cumulating systems, conditional on different information about the structure. Results show that, in the case hypotheses apply, the developed models may represent a basis for handy tools enabling risk‐informed tagging by stakeholders and decision makers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The phase‐shift‐plus‐interpolation and extended‐split‐step‐Fourier methods are wavefield‐continuation algorithms for seismic migration imaging. These two methods can be applied to regions with complex geological structures. Based on their unified separable formulas, we show that these two methods have the same kinematic characteristics by using the theory of pseudodifferential operators. Numerical tests on a Marmousi model demonstrate this conclusion. Another important aspect of these two methods is the selection of reference velocities and we explore the influence of the selection of reference velocities by comparing the geometric progression method and the statistical method. We show that the geometric progression method is simple but does not take into account the velocity distribution while the statistical approach is relatively complex but reflects the velocity distribution.  相似文献   

13.
14.
15.
Ti‐SBA‐15 materials with Ti incorporated into the framework of SBA‐15 and controllable Ti contents were successfully prepared via a post‐treatment route in supercritical CO2‐ethanol solution, followed by calcination. The resultant Ti‐SBA‐15 materials were characterized by means of different techniques including X‐ray diffraction, X‐ray photoelectron spectroscopy, transmission electron microscopy, IR analysis, and N2 sorption analysis. It was demonstrated that the resultant materials retained a structure similar to that of the parent SBA‐15, and Ti was incorporated into the framework of SBA‐15. At high Ti content, i.e, Si/Ti = 5:1, a TiO2 phase formed and was coated onto the inner surface of SBA‐15 in addition to the incorporation of the Ti in the framework. The BET surface areas of the Ti‐SBA‐15 samples decreased with increasing Ti content. The presence of small amounts of H2O in the reaction medium may have resulted in some TiO2 nanoparticles being uniformly distributed in the pores of the SBA‐15 accompanying the incorporation of Ti in the SBA‐15 framework.  相似文献   

16.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

17.
Using a large set of rainfall–runoff data from 234 watersheds in the USA, a catchment area‐based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS‐CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS‐CN method showed that the modified version performed better than did the existing one on the data of all seven area‐based groups of watersheds ranging from 0·01 to 310·3 km2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the findings of shaking‐table experiments conducted to examine the seismic performance of a full‐scale, one‐story, wood‐framed structure with masonry veneer. The structure was designed and constructed in accordance with current U.S. code provisions. The veneer was attached to the wood backing with two kinds of metal anchors, corrugated ties fastened with 8d nails and rigid ties fastened with #8 screws. The tests have shown that the use of nails to fasten veneer anchors to the wood studs is highly unreliable due to the high variation of the nail extraction capacity, which can be influenced by the moisture content of the wood. Other than this, both the wood frame and the masonry veneer performed well under severe ground motions far exceeding a design level earthquake for Seismic Design Category D. Good performance was observed for the rigid veneer ties, which were attached to the wood studs with screws. The results have shown that the veneer walls parallel to the direction of shaking helped to restrain the motion of the wood structure and therefore should not be simply treated as added mass. The detailing of wood roof diaphragms requires special attention in consideration of the out‐of‐plane inertia force of the veneer that can be transmitted through the top plate of the wood‐stud wall to the rim joist. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.  相似文献   

20.
Waveform inversion is a velocity‐model‐building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image‐domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the information carrier. The objective function for the image‐domain approach is designed to optimize the coherency of reflections in extended common‐image gathers. The function applies a penalty operator to the gathers, thus highlighting image inaccuracies arising from the velocity model error. Minimizing the objective function optimizes the model and improves the image quality. The gradient of the objective function is computed using the adjoint state method in a way similar to that in the analogous data‐domain implementation. We propose an image‐domain velocity‐model building method using extended common‐image‐point space‐ and time‐lag gathers constructed sparsely at reflections in the image. The gathers are effective in reconstructing the velocity model in complex geologic environments and can be used as an economical replacement for conventional common‐image gathers in wave‐equation tomography. A test on the Marmousi model illustrates successful updating of the velocity model using common‐image‐point gathers and resulting improved image quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号