首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na2O contents were determined by electron microprobe analysis in 124 garnets from diamonds, xenoliths of peridotites, eclogites from kimberlitic pipes and metamorphic complexes. Na2O content ranges between 0.01 and 0.22% with the limit of detection at about 0.01%. In the garnets of diamond-bearing eclogites and orange garnets from diamonds a regular increase in the Na2O content has been established, varying from 0.09 to 0.22, as compared to garnets from eclogites of metamorphic complexes (range 0.01 to 0.06). It is assumed that the increased Na2O content in the garnets of eclogites is mainly connected with higher pressure, whereas isomorphism of sodium is connected with the initial stages of the transition from Si4 to Si6 in the garnet structure: CaAlNaSi.The study of the sodium content of garnets has shown that all the orange-coloured garnets from diamonds so far studied are related to eclogite assemblage. Determination of the Na2O content of individual inclusions of chrome pyropes from diamonds permits a conclusion on the type of assemblage (with or without clinopyroxene). Proceeding from these data, the importance of garnet-olivine paragenesis within the stability field of diamond has been revealed.Some clear distinctions in the sodium content of the garnets from xenoliths of the kyanite eclogites from the Zagadochnaya pipe in Yakutia and the Roberts Victor mine in South Africa confirm the relation of these eclogites to different subfacies.A conclusion is drawn as to the possibility of utilizing the Na/Na+Ca distribution in the garnets and pyroxenes of eclogites of especially deep-seated origin as a pressure indicator and to the necessity for experimental testing of the dependence of the distribution of these elements in garnets and pyroxenes on pressure, presumably in the range of 30–100 kbars.  相似文献   

2.
 Diamond-bearing eclogites are an important component of the xenoliths that occur in the Mir kimberlite, Siberian platform, Russia. We have studied 16 of these eclogite xenoliths, which are characterized by coarse-grained, equigranular garnet and omphacite. On the basis of compositional variations in garnet and clinopyroxene, this suite of eclogites can be divided into at least two groups: a high-Ca group and a low-Ca group. The high-Ca group consists of high-Ca garnets in equilibrium with pyroxenes that have high Ca-ratios [Ca/(Ca+Fe+Mg)] and high jadeite contents. These high-Ca group samples have high modal% garnet, and garnet grains often are zoned. Garnet patches along rims and along amphibole- and phlogopite-filled veins have higher Mg and lower Ca contents compared to homogeneous cores. The low-Ca group consists of eclogites with low-Ca garnets in equilibrium with pyroxenes with a low Ca-ratio, but variable jadeite contents. These low-Ca group samples typically have low modal% of garnet, and garnets are rarely compositionally zoned. Three samples have mineralogic compositions and modes transitional to the high- and low-Ca groups. We have arbitrarily designated these samples as the intermediate-Ca group. The rare-earth-element (REE) contents of garnet and clinopyroxene have been determined by ion microprobe. Garnets from the low-Ca group have low LREE contents and typically have [Dy/Yb]n < 1. The high-Ca group garnets have higher LREE contents and typically have [Dy/Yb]n > 1. Garnets from the intermediate-Ca group have REE contents between the high- and low-Ca groups. Clinopyroxenes from the low-Ca group have convex-upward REE patterns with relatively high REE contents (ten times chondrite), whereas those from the high-Ca group have similar convex-upward shapes, but lower REE contents, approximately chondritic. Reconstructed bulk-rock REE patterns for the low-Ca group eclogites are relatively flat at approximately ten times chondrite. In contrast, the high-Ca group samples typically have LREE-depleted patterns and lower REE contents. The δ18O values measured for garnet separates range from 7.2 to 3.1‰. Although there is a broad overlap of δ18O between the low-Ca and high-Ca groups, the low-Ca group samples range from mantle-like to high δ18O values (4.9 to 7.2‰), and the high-Ca group garnets range from mantle-like to low δ18O values (5.3 to 3.1‰). The oxygen isotopic compositions of two of the five high-Ca group samples and four of the eight low-Ca group eclogites are consistent with seawater alteration of basaltic crust, with the low-Ca group eclogites representative of low-temperature alteration, and the high-Ca group samples representative of high-temperature hydrothermal seawater alteration. We interpret the differences between the low- and high-Ca group samples to be primarily a result of differences in the protoliths of these samples. The high-Ca group eclogites are interpreted to have protoliths similar to the mid to lower sections of an ophiolite complex. This section of oceanic crust would be dominated by rocks which have a significant cumulate component and would have experienced high-temperature seawater alteration. Such cumulate rocks probably would be LREE-depleted, and can be Ca-rich because of plagioclase or clinopyroxene accumulation. The protoliths of the low-Ca group eclogites are interpreted to be the upper section of an ophiolite complex. This section of oceanic crust would consist mainly of extrusive basalts that would have been altered by seawater at low temperatures. These basaltic lavas would probably have relatively flat REE patterns, as seen for the low-Ca group eclogites. Received: 10 July 1995 / Accepted: 17 May 1996  相似文献   

3.
Summary A detailed electron microprobe study of the mineralogy of fifteen eclogites from the Moses Rock kimberlitic dyke, Utah, has demonstrated complexity in compositional zoning of minerals. Most of the eclogites examined are of the almandine-jadeite type and zonal and irregular variation in grossular content of garnet and acmite, jadeite and diopside-hedenbergite content of pyroxene produce large uncertainties in temperature estimates based on Fe/Mg partitioning between garnet and clinopyroxene. Zoning pattems of increasingX Mg in both clinopyroxene and garnet, and increasingX Jd in clinopyroxene, suggest the introduction of Mg and Na throughout the evolution of these essentially bimineralic assemblages. Averaged data yield temperatures from 340°C to 500°C at 10 kbar for compositions of rims of coexisting garnet and clinopyroxene. Two samples contain pyrope-rich gamets but coexisting pyroxenes are extremely magnesian and temperatures of equilibration of both primary omphacite-pyrope and secondary omphacite-almandine/pyrope-chlorite are only slightly higher (500–650° at 10 kbar) than those for almandine jadeite eclogites and estimates overlap with those of some examples of the latter type. Unlike the majority of almandine-jadeite eclogites, two examples contain garnets with almandine-cores and pyrope-rich rims without accompanying variation in grossular content. The simple interpretation of these samples as evidence of garnet growth during prograde metamorphism is precluded by complex zoning in coexisting clinopyroxene. The eclogites provide evidence for the presence of a metamorphic terrane including rocktypes resembling those of blueschist terranes beneath the Colorado Plateau but do not permit deduction of theP,T path by which such rocktypes reached theirP,TT-conditions (10 kbar, 400–600°C) of metamorphism.
Petrogenese von Eklogit-Einschlüssen im Moses Rock Dyke, Utah, U.S.A.
Zusammenfassung Eine detaillierte Studie der Mineralogie von fünfzehn Eklogiten vom Moses Rock Kimberlit-Dyke (Utah) mittels mikrosonde zeigte komplexe Zonierung der Zusammensetzung der Minerale. Die meisten der untersuchten Eklogite gehören zum Almandin-Jadeit-Typ; zonare und irreguläre Variationen der Grossularkomponente der Granate und der Akmit-, Jadeit- und der Diopsid-Hedenbergitkomponenten der Pyroxene resultieren in großen Unsicherheiten bei Temperaturabschätzungen auf der Basis von Fe/Mg-Verteilungen zwischen Granat und Clinopyroxenen. Durchschnittswerte von Randzonen koexistierender Granate und Clinopyroxene ergeben Temperaturen von 340°C bis 500°C für 10 kb.Zwei Proben enthielten pyropreichen Granat, die koexistierenden Clinopyroxene sind extrem Mg-reich und die Gleichgewichtstemperaturen sowohl von primärem Omphacit-Pyrop als auch von sekundärem Omphacit-Almandin/Pyrop-Chlorit sind nur geringfügig höher (500°–600°C bei 10 kb) als die für Almandin-Jadeit-Eklogite; die Schätzungen überlappen mit denen von einigen Proben des letzteren Typs.Im Gegensatz zur Mehrheit der Almandin-Jadeit-Eklogite enthalten zwei Proben Granate mit almandinreichen Kernen und pyropreichen Rändern ohne gleichzeitige Schwankungen im Grossulargehalt. Eine einfache Interpretation dieser als Beweis für Granatwachstum während prograder Metamorphose muß jedoch ausgeschlossen werden, da die koexistierenden Clinopyroxene komplex zoniert sind.Die Eklogite können als Beweis angesehen werden für das Vorhandensein eines metamorphen Bereichs unter dem Colorado-Plateau, der Gesteinstypen enthält, die denen der Glaukophanschieferfacies ähneln. Es können jedoch keine Aussagen über denP-T-Weg gemacht werden, über den diese Gesteinstypen ihre heute feststellbarenP-T-Bedingungen (400°–600°C, 10 kb) erreicht haben.


With 7 Figures  相似文献   

4.
The Ubende terrane is one of the eight structural blocks constituting the Palaeoproterozoic Ubendian Belt of southwest Tanzania. The Ubende terrane is made up of high-pressure granulite-facies rocks, which occur in association with amphibolites and hornblende gneisses. Preliminary mineralogical studies of the granulite-facies metagabbros indicate that they were derived from rocks, which originally consisted of clinopyroxene and intergranular plagioclase. The mineralogy of these metagabbros consists principally of sodian augite and garnets (50% almandine, 30% pyrope and 20% grossular). Plagioclase, hornblende, quartz, rutile and haematite occur as accessory components. The sodian augite is slightly zoned with Mg content increasing towards the margin and Fe, Al and Na concentrations decrease towards its rim. Thermobarometric calculations indicate that the metagabbros were formed at metamorphic conditions of about 840–900 °C and pressures of 12.2–13.7 kbar. Presence of supersiliceous clinopyroxene (quartz lamellae in clinopyroxene) and decompositional textures suggest that these granulite-facies metagabbros might be retrogressed eclogites.  相似文献   

5.
A grospydite from Roberts Victor contains the most Ca-rich garnets yet found in South African kimberlite xenoliths and also sub-micron sized sodic nepheline in melted and quenched clinopyroxene. Three stages can be recognised in the textural evolution of the grospydite. The first is the development of a layering of large kyanite laths. Kyanite together with complex aluminous clinopyroxene precipitated and accumulated from an evolved residual eclogitic liquid which has penetrated across the garnet join so that garnet no longer precipitated. Solidus conditions for the Roberts Victor grospydite are estimated as T = 1350–1550 ° C, P = 27–39 kbars. Adjacent layers in the grospydite have slightly different mineral compositions suggesting that the small-scale layering (1–5 cm) in this, and associated rocks, may be related to varying activities of R2O3 components and possibly to f o 2.The second stage is represented by a necklace texture in which all the garnet and some kyanite developed along grain boundaries of clinopyroxenes with triple-point textures. This is interpreted as an example of incoherent, grain-boundary exsolution resulting from large subsolidus volume changes. The conditions for subsolidus equilibration are estimated to be T= 1120–1320 ° C, P = 42–56 kbars.Moderate Ca-contents in garnet and excess Al[6] in clinopyroxene may be subsolidus indicators of eclogite samples evolving towards grospydite at the solidus.The third stage is represented by the melting of jadeite-rich clinopyroxenes and quenching to glass, nepheline and plagioclase. Most of the glass has a composition similar to clinopyroxene, except for K2O, though local areas of different glass, possibly the result of phase separation, also occur. The melting process seems to be a low-pressure feature involving limited addition of H2O at temperatures between 900–1000 ° C. Water-absent melting could indicate temperatures up to 1500 ° C.The temperatures and pressures assigned to the three-stage evolution of this grospydite imply formation at moderate pressures and subsolidus equilibration at higher pressures. This is equated with downgoing mantle/asthenosphere tectonic processes. After entrainment in a kimberlite magma the grospydite fragment apparently ascended rapidly, thus allowing low-pressure melting and quenching.  相似文献   

6.
Trace element concentrations in the four principal peridotitic silicate phases (garnet, olivine, orthopyroxene, clinopyroxene) included in diamonds from Akwatia (Birim Field, Ghana) were determined using SIMS. Incompatible trace elements are hosted in garnet and clinopyroxene except for Sr which is equally distributed between orthopyroxene and garnet in harzburgitic paragenesis diamonds. The separation between lherzolitic and harzburgitic inclusion parageneses, which is commonly made using compositional fields for garnets in a CaO versus Cr2O3 diagram, is also apparent from the Ti and Sr contents in both olivine and garnet. Titanium is much higher in the lherzolitic and Sr in the harzburgitic inclusions. Chondrite normalised REE patterns of lherzolitic garnets are enriched (10–20 times chondrite) in HREE (LaN/YbN = 0.02–0.06) while harzburgitic garnets have sinusoidal REEN patterns, with the highest concentrations for Ce and Nd (2–8 times chondritic) and a minimum at Ho (0.2–0.7 times chondritic). Clinopyroxene inclusions show negative slopes with La enrichment 10–100 times chondritic and low Lu (0.1–1 times chondritic). Both a lherzolitic and a harzburgitic garnet with very high knorringite contents (14 and 21 wt% Cr2O3 respectively) could be readily distinguished from other garnets of their parageneses by much higher levels of LREE enrichment. The REE patterns for calculated melt compositions from lherzolitic garnet inclusions fall into the compositional field for kimberlitic-lamproitic and carbonatitic melts. Much more strongly fractionated REE patterns calculated from harzburgitic garnets, and low concentrations in Ti, Y, Zr, and Hf, differ significantly from known alkaline and carbonatitic melts and require a different agent. Equilibration temperatures for harzburgitic inclusions are generally below the C-H-O solidus of their paragenesis, those of lherzolitic inclusions are above. Crystallisation of harzburgitic diamonds from CO2-bearing melts or fluids may thus be excluded. Diamond inclusion chemistry and mineralogy also is inconsistent with known examples of metasomatism by H2O-rich melts. We therefore favour diamond precipitation by oxidation of CH4-rich fluids with highly fractionated trace element patterns which are possibly due to “chromatographic” fractionation processes. Received: 27 January 1996 / Accepted: 5 May 1997  相似文献   

7.
8.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

9.
Within the Bergen Arcs of W Norway, Caledonian eclogite facies assemblages (T650°C, P15 kbar) have formed from Grenvillian granulites (T= 800–900°C, P10 kbar) along shear zones and fluid pathways. Garnets in the granulites (grtI: Pyr56–40 Alm45–25Gro19–14) are unzoned or display a weak (ca. 1 wt% FeO over 1000m) zoning. The eclogite facies rocks contain garnets inherited from their granulite facies protoliths. These relict garnets have certain areas with compositions identical to the garnets in their nearby granulite, but can be crosscut by bands of a more Almrich composition (grtII: Pyr31–41Alm40–47Gro17–21) formed during the eclogite facies event. These bands, orientated preferentially parallel or perpendicular to the eclogite foliation, may contain mineral filled veins or trails of eclogite-facies minerals (omphacite, amphibole, white mica, kyanite, quartz and dolomite). Steep compositional gradients (up to 9 wt% FeO over 40 m) separate the two generations of garnets, indicating limited volume diffusion. The bands are interpreted as fluid rich channels where element mobility must have been infinitely greater than it was for the temperature controlled volume diffusion at mineral interfaces in the granulites. The re-equilibration of granulite facies garnets during the eclogite facies event must, therefore, be a function of fracture density (deformation) and fluid availability. The results cast doubts on modern petrological and geochronological methods that assume pure temperature controlled chemical re-equilibration of garnets.  相似文献   

10.
Temperatures and H2O contents of low-MgO high-alumina basalts   总被引:1,自引:1,他引:1  
Experimental evidence is used to estimate H2O contents in low-MgO high-alumina basalts (HABs) (<6 wt.% MgO) and basaltic andesites (BAs) (<5 wt.% MgO) that occur worldwide in magmatic arcs. Wholerock compositions of low-MgO HABs and BAs, phenocryst assemblages, and mineral chemistry match the compositions of liquids, phase assemblages, and mineral-compositions produced in H2O-saturated melting experiments on HABs at moderate pressure (1–2 kb). Low-MgO HABs and BAs therefore could have existed as H2O-rich multiply-saturated liquids within the crust. Results are presented for melting experiments on two HABs and an andesite at 1 kb pressure, H2O-saturated, with fO2 at the NNO buffer. These data and other experimental results on HABs are used to develop a method to estimate the temperature and H2O content of HAB or BA liquids saturated with olivine, plagioclase, and either high-Ca pyroxene or hornblende. Estimated H2O contents of HAB liquids are variable and range from 1 to 8 wt.%. High-MgO HABs (>8wt.% MgO) could have H2O contents reaching no more than 1–2wt.%. The more common low-MgO HABs could have existed as liquids within the crust with H2O contents of 4 wt.% or higher at temperatures<1100°C. Magmas with these high H2O contents will saturate with and exsolve aqueous fluid upon approaching the surface. They cannot erupt as liquids and must grow crystals at shallow depths, thus accounting for the abundant phenocrysts in low-MgO HABs and BAs.  相似文献   

11.
Three garnet-biotite pairs and eleven garnet-cordierite-biotite triplets from the Steinach aureole (Oberpfalz, North-East Bavaria) were analyzed using an electron probe microanalyzer.The regional metamorphic muscovite-biotite schists contain garnets strongly zoned with Mn-Ca-rich centers and Fe-rich edges, the average composition being almandine 67 — spessartine 4 — pyrope 4 — grossular (+andradite) 25.The first contact garnet that is formed in mica schists of the outermost part of the aureole is small, virtually unzoned, and has an average composition of almandine 52 — spessartine 37 — pyrope 8 — grossular (+andradite) 3. With increasing metamorphic grade, there is a consistent trend to form garnets richer in Fe ending up with a composition almandine 84.5 — spessartine 5.5 — pyrope 7.5 — grossular (+andradite) 2.5. This trend is accompanied by a general increase in grain size and modal amount of garnet. Associated cordierites and biotites also become richer in Fe with increasing grade. While the garnets in the highest grade sillimanite hornfelses are poorly zoned, the transitional andalusite-sillimanite hornfelses contain garnets with distinct but variable zonation profiles.These facts can possibly be explained by the time-temperature relationships in the thermal aureole. In a phase diagram such as the Al-Fe-Mg-Mn tetrahedron, the limiting mineral compositions of a four-phase volume or a three-phase triangle are fixed by T and P (the latter remaining effectively constant within a thermal aureole). Thus, in garnet-cordierite-biotite assemblages, garnet zonation should be controlled by temperature variation rather than by a non-equilibrium depletion process. Taking into account the experimental data of Dahl (1968), a zoned garnet from a transitional andalusite-sillimanite hornfels would reflect a temperature increase of about 40° C during its growth. A hypothetical P-X diagram is proposed to show semi-quantitatively the compositional variation of garnet-cordierite pairs with varying pressures (T constant).  相似文献   

12.
The chrome-rich magnesian garnets (6.6–18.9% Cr2O3) of kimberlitic concentrates and some peridotite xenoliths contain variable admixtures of CaO: from 0.69 to 26.0% (1.7–72% Ca-component). All the garnets both in respect of Ca and Cr-contents make up a continuous series.The variability in the Ca-content is caused by differences in paragenesis. Most of the Ca-poor pyropes are related to a paragenesis without clinopyroxene (mostly dunitic). Garnets rich in calcium are related to a paragenesis without entstatite. All the parageneses listed are of an ultramafic type, i.e. contain magnesian olivine. The solubility of knorringite—Mg3Cr2(Si3O12)—in kimberlitic garnets is possibly limited by pressure and does not exceed 50–60% mol.  相似文献   

13.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

14.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

15.
In the Western Gneiss Region of Norway are found numerous peridotite lenses which have been extensively recrystallized under amphibolite fades conditions during the Caledonian Orogeny. However, evidence for an earlier Caledonian high-pressure metamorphism has been recorded by abundant eclogite and granulite relicts within gneiss and by the presence of at least ten garnet perioditite bodies preserved within chlorite peridotites. Two garnet-bearing ultramafic assemblages have been recognized: olivine-orthopyroxene-clinopyroxene-garnet and olivine-ortho-pyroxene-pargasitic-amphibole-garnet.Except for olivine, minerals in the garnet peridotites are compositionally zoned, with relatively uniform cores and compositional gradients generally confined to the outer 200 micrometers, or less, of grains. The most common zoning patterns at grain margins are an increase in Fe/Mg in garnet, an increase in Al2O3 in orthopyroxene, and a decrease in Na2O and Al2O3 in clinopyroxene, although there are exceptions to these patterns at two localities. These zoning patterns have developed mainly in response to cooling and decompression of the garnet peridotites.Application of geothermometers and barometers to the garnet peridotites has yielded temperatures of 770–860° C and pressures of 30–43 kb for cores of grains and consistently lower temperatures and pressures for rims, except for peridotites on Oterøy, where there is an apparent temperature increase from cores to rims.The petrologic and geothermobarometric evidence for most of the investigated garnet peridotites is compatible with their tectonic emplacement from the upper mantle into thickened continental crust during Caledonian collision of the Baltic and Greenland plates.  相似文献   

16.
A regional study of olivine-bearing metagabbros in the Adirondacks has permitted testing of the P(pressure)-T(temperature)-X(composition) dependence of garnet-forming reactions as well as providing additional regional metamorphic pressure data. Six phases, olivine, orthopyroxene, clinopyroxene, garnet, plagioclase and spinel, which can be related by the reactions: orthopyroxene+clinopyroxene+spinel +anorthite=garnet, and forsterite+anorthite=garnet occur together both in coronal and in equant textures indicative of equilibrium. Compositions of the respective minerals are typically Fo25–72, En44–75, En30–44Fs9–23Wo47–49, Pp13–42Alm39–63Gr16–20, An29–49 and Sp16–58. When they occur in the same rock, equant and coronal garnets are homogeneous and compositionally identical suggesting that chemical equilibrium may have been attained despite coronal textures. Extrapolating reactions in the simple CMAS system to granulite temperatures and making thermodynamic corrections for solid solutions gives equilibration pressures (using the thermometry of Bohlen et al. 1980b) ranging from about 6.5 kb in the Lowlands and southern Adirondacks to 7.0–8.0 kb in the Highlands for the assemblage olivine-plagioclase-garnet. These results are consistent with inferred peak metamorphic conditions in the Adirondacks (Valley and Bohlen 1979; Bohlen and Boettcher 1981). Thus the isobaric retrograde path suggested by Whitney and McLelland (1973) and Whitney (1978) for the formation of coronal garnet in olivine metagabbros may not be required. Application of the same equilibria gives >8.7 kb for South Harris, Scotland and 0.9 kb for the Nain Complex. Disagreement of the latter value with orthopyroxeneolivine-quartz barometry (Bohlen and Boettcher 1981) suggests that the use of iron-rich rocks (olivines Fa50) results in errors in calculated pressures.Contribution No. 385 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109, USA  相似文献   

17.
High-temperature (HT), Group A eclogites from three localities in the Moldanubian Zone of the Bohemian Massif are interpreted to have formed in the mantle and to have been transported into the crust by their enclosing garnet peridotites during Variscan orogenesis. Garnet and omphacite are compositionally zoned and contain homogeneous cores and retrograde rims. Cores of minerals yield minimum temperatures and pressures of 850 to 985°C and 16.0 to 22.5 kb, based on Fe–Mg exchange between garnet and clinopyroxene and the jadeite content of clinopyroxene. Sugh high temperatures indicate equilibration in, and derivation from, the upper mantle. Trace element compositions, including the REEs, high MgO contents, and high Mg numbers suggest that the rocks formed by high pressure accumulation of garnet and clinopyroxene and variable amounts of trapped melt. Sm-Nd ages determined on four garnet-clinopyroxene pairs from the three localities are 377±20, 342±9, 336±16, and 323±7 Ma. Nd and initial 87Sr/86Sr are negatively correlated, varying from +6.7 to -0.1 and 0.7027 to 0.7057, respectively. Field, compositional, and isotopic data indicate that the eclogites were derived from heterogeneous mantle that included depleted and enriched compositions; this heterogeneity may have resulted from subduction processes that occurred prior to the late Variscan collision of Gondwana and Baltica.  相似文献   

18.
Garnet, an uncommon accessory mineral in igneous rocks, occurs in seven small peraluminous granitoid plutons in the southeastern Arabian Shield; textural equilibrium between garnet and other host granitoid minerals indicates that the garnets crystallized from their host magmas. Compositions of the garnets form three groups that reflect host-granitoid compositions, which in turn reflect source compositions and tectonic regimes in which the host magmas were generated. Garnets from the seven plutons have almandine-rich cores and spessartine-rich rims. This reverse zoning depicts host magma compositional evolution; i.e. rimward spessartine enrichment resulted from progressive, host-magma manganese enrichment. The garnets are heavy rare-earth element enriched; (Lu/La) N ranges from 13 to 355 and one of the garnets contains spectacularly elevated abundances of Y, Ta, Th, U, Zn, Zr, Hf, Sn, and Nb. Involvement of garnets with these trace element characteristics in magma genesis or evolution can have dramatic effects on trace element signatures of the resulting magmas. Other researchers suggest that Mn-enriched magmas are most conducive to garnet nucleation. Although the garnetiferous granitoids discussed here are slightly Mn enriched, other genetically similar peraluminous Arabian granitoids lack garnet; Mn enrichment alone does not guarantee garnet nucleation. The presence of excess alumina in the magma may be a prerequisite for garnet nucleation.  相似文献   

19.
Interpretation of Sm-Nd garnet ages is frequently impaired by one of the following restrictions: (a) high-LREE inclusions, (b) isotopic disequilibrium, and (c) the uncertainty about the closure temperature. These issues are addressed by way of an evaluation of garnet Sm-Nd data from different rock types of the Austroalpine basement units, Eastern Alps, including metabasic eclogites, mica schist and paragneiss, metapegmatite and metagranite.Nd concentration in handpicked garnet varies between 0.021 and 23.1 ppm in metabasites, 0.49 and 17.4 ppm in metapelites and between 0.024 and 4.6 ppm in metapegmatites and metagranites. The overall range of 147Sm/144Nd is 0.15-2.5 in garnet from metabasites, 0.12-3.03 in metapelite garnet and 0.66-7.21 in Mn-rich garnet from metapegmatites and metagranites. A clear negative correlation between Nd concentration and Sm/Nd is observed in garnets from all these lithologies. Therefrom, it is concluded that even optically “clean” garnet separates may contain high-LREE microinclusions, such as epidote-allanite, zoisite, apatite, sphene, monazite or zircon. However, very low Nd concentrations correlated with low Sm/Nd as well as high Nd concentrations (>5 ppm) correlated with fairly high Sm/Nd ratios (0.8) have also been observed. Apart from replicate analyses within as well as between samples with a common PT-history, leaching experiments are a useful technique to elucidate any distorting influence of unequilibrated inclusions on the garnet age, especially if the observed Sm/Nd ratio is low (<0.5). Leaching of garnet separates with HCl (2.5, 5.8 M) produces no obvious element fractionation, but may improve Sm/Nd, and hence age precision, considerably. Isotopic disequilibrium between garnet and other matrix minerals is observed preferentially in basic eclogites, derived from gabbroic precursors.Sm-Nd garnet analysis allows the recognition of several distinct garnet-forming events in the Eastern Alps.(a) A Variscan high-P event is documented in metabasites from the northern-central Ötztal basement around 360-350 Ma, whereas garnet from sillimanite-bearing gneisses dates the Variscan thermal peak in the western part of the same subunit around 345-330 Ma.(b) A long-lived, Permian to Triassic event (285-225 Ma), correlated with crustal extension and low-P metamorphism, is documented by spessartine-rich garnet from metapegmatites as well as almandine-rich garnet cores from mica schist.(c) Age data of garnet from eo-Alpine (Cretaceous) deeply subducted rocks of the southern/eastern Austroalpine units are related to near-peak PT, eclogite- to amphibolite-facies metamorphic conditions (peak: 2 GPa/685 °C), and/or incipient isothermal decompression, due to fast, tectonically driven exhumation (110/100-85 Ma). At cooling rates of 20-30 °C/Ma (exhumation rates: 3-5 km/Ma), the Sm-Nd closure temperature (Tc) for mm-sized garnet in these rocks is estimated at 650-680 °C.  相似文献   

20.
The major and trace element compositions of nine eclogites from the Dabie–Sulu ultrahigh pressure (UHP) metamorphic terrane in eastern China were determined for both whole rock and the main constituent minerals, garnet and clinopyroxene. The results indicate that the eclogite protoliths originated from a basaltic magma, which formed in a continental setting as shown by isotopic and immobile element data. Based on the garnet REE characteristics, the eclogites can be roughly divided into two groups. Group 1 has LREE enrichment with no Eu anomaly for whole rock, and smooth LREE depletion but HREE enrichment pattern for garnet, whereas group 2 shows a depletion of LREE with a pronounced positive Eu anomaly and flat HREE pattern for both whole rock and garnet. From these features, we suggest that the protoliths for group 2 are Fe–Ti–gabbros with relatively high cumulus plagioclase and Fe–Ti oxide, whereas the group 1 eclogites are probably from basalts. Therefore, the unusual garnet REE pattern observed in group 2 can be considered as an important signature for identifying gabbro protoliths for eclogites. The identification of gabbro protoliths from the eclogites in the Dabie–Sulu terrane provides evidence for Neoproterozoic rift magmatism in the northern margin of the Yangtze craton. During ultrahigh pressure metamorphism in the Dabie–Sulu terrane, LILEs (including Ba, Rb, Th, U, K) had high mobility, but REEs and HFSEs were immobile, and trace element distribution equilibrium was approached between garnet and clinopyroxene. An estimate of mass balance indicates that garnet and clinopyroxene host the majority of HREEs and Y, and clinopyroxene is a significant host for Sr, but minor and accessory minerals predominantly account for LREEs, Th, U, and Zr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号