首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Based on results of the simultaneous TV observations at Barentsburg high-latitude observatory and Lovozero auroral observatory and using the IMAGE auroral luminosity images, the auroral fine structure and dynamics has been studied during the substorm of December 26, 2000, when the auroral luminosity distribution represented a double oval. It has been indicated that the interaction between the processes proceeding in different magnetospheric regions, the projections of which are the poleward and equatorward edges of the double oval, is observed in auroras in the process of substorm development.  相似文献   

2.
The results of observations of turbulent transport in the Earth’s magnetosphere tail are summarized. The results of recent works on the projection of the auroral oval onto the equatorial plane, according to which the main part of the oval is not projected onto the plasma sheet, are taken into account. Analysis of the eddy diffusion coefficient dependences on the geocentric distance and on the phase of a magnetosphere substorm, both across the sheet and in the azimuthal direction, is carried out. The role of eddy diffusion in the creation of quasi-equilibrium plasma structures and in the plasma transport from the magnetospheric flanks into the plasma sheet is considered. The transport along the sheet is discussed. The problems of turbulent transport that can be solved by analysis the data of multisatellite projects are indicated.  相似文献   

3.
Several studies on the scaling properties of the near-Earth magnetosphere and auroral phenomena are reviewed. These studies employ modern analysis techniques that include fractal, multifractal, wavelet, wavelet bicoherence, and sign-singularity analyses as well as cellular automaton simulations of sandpile and avalanches. The results provide strong evidence for the multiscale, cross-scale coupling, and reorganization nature of auroral and magnetospheric phenomena, suggesting the possibility that the magnetosphere is in a forced and/or self organized critical state. Signatures of inverse cascade are found in magnetic fluctuations in current disruption events, which may indicate large-scale substorm features such as substorm current wedge and plasmoid may be evolved from small-scale plasma turbulence structures. Insights gained from these studies help to discriminate the existing competing substorm models. The multiscale properties of magnetospheric substorms are consistent with substorm models with intrinsic multiscale processes and not with substorm models with only a macroscopic process.  相似文献   

4.
A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ~ ?400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.  相似文献   

5.
Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.  相似文献   

6.
The in situ observations of the Earth magnetosphere performed over the past decades of space research have provided a rather good understanding of many partial localized processes of the magnetospheric substorm. The continuing lack of global observations inhibits the construction of a coherent picture of the substorm as a whole, which is actually determined by the coupling of the partial processes. In this context the importance of global observations for the advancement of magnetospheric substorm studies is critical. This paper presents briefly a promising technique of global observations, namely the imaging of charge exchange neutral atoms, or neutral atom imaging (NAI) of the magnetosphere. Model and theoretical estimates of charge-exchange neutral atom fluxes, as well as appropriate spacecraft orbit and instrumentation requirements are presented and discussed for specific regions of interest and vantage points. The potential merits of NAI for substorm research are presented along with possible combinations with other types of observational methods. Substorm issues that would benefit from NAI should include among others the assessment of the ionospheric contribution to the hot magnetospheric plasma, the relative importance of various ionospheric ion source regions, the resolution of spatial and temporal characteristics of substorm ion injections. NAI observations can be precious complements to local observations and lead to the understanding of how local processes, many of which are resolved quite well today, combine to form the global process of the magnetospheric substorm.  相似文献   

7.
As a rule, bright auroral arcs evolve near the poleward boundary of the auroral oval at the growth phase of a substorm, a phenomenon that is known to occur near the poleward edge of the auroral oval. The closeness of these arcs to the projection of the magnetic separatrix on the night side suggests that their generation is related to magnetic reconnection in the magnetospheric tail in a particular way. In this study this suggestion is confirmed by the fact that integral brightness of the auroral oval at the poleward edge correlates with magnetic field structures in the solar wind that are observed by ACE and Wind satellites at distances of 50–300 RE upstream and are shifted towards the magnetospheric tail with time delays of ~ 10–80 min, consistent with measurements of the solar wind velocity. About 50 examples of this correlation have been found. The possible physical mechanisms of the effect observed are discussed.  相似文献   

8.
The works in the alternative direction of magnetospheric studies are reviewed. In contrast to the traditional approach, where the basis process is magnetic field line reconnection, transformation of kinetic energy into electromagnetic one at the bow shock front is the basis process in the proposed approach. It has been indicated that this new paradigm makes it possible to overcome the main difficulties that remained within the scope of the previous paradigm. It has been briefly demonstrated how several following processes and phenomena are explained within the scope of the new approach: (1) transformation of the solar wind kinetic energy into the electromagnetic energy; (2) electromagnetic energy transfer into the magnetosphere; (3) organization of the system of bulk currents, formation of field-aligned currents from the magnetosphere, and compatibility of these currents with the ionospheric current systems; (4) shape, value, and dynamics of the particle precipitation auroral regions; and (5) substorm expansion (auroral breakup). Other possibilities of the new approach and paradigm replacement consequences are briefly considered.  相似文献   

9.
The connection between rapid increases in the intensity of electrons with energies >0.3 MeV and magnetospheric substorms was studied for the first time by measurements of energetic electrons on the low-orbit SERVIS-1 satellite. In addition to the well-known process of radial diffusion detected at the recovery phase, the increases during a period of time no longer than 1.5 h at the main phase of six magnetic storms in a channel of 0.3–1.7 MeV (in three of them, in a channel of 1.7–3.4 MeV) were measured. An analysis of auroral zone magnetograms demonstrated that the increases occurred at the instant of magnetospheric substorm activation. A conclusion is made that the increases are caused by the radial injection of electrons by a pulse electric field induced during substorm activations. Pulse injections are shown to be one of the main mechanisms of electron radiation belt completion in the inner magnetosphere and, in combination with moderate radial diffusion, to be responsible for the appearance of large fluxes of energetic electrons (“killers”) in the magnetosphere after magnetic storms.  相似文献   

10.
《Journal of Atmospheric and Solar》2000,62(17-18):1659-1668
Over the last 50 years magnetospheric research has transferred its focus from geomagnetism to space physics, or from inferring the intensity of extraterrestrial currents, through discoveries of the main plasma regions in the magnetosphere, to predicting the processes occurring in the entire solar wind–magnetosphere–ionosphere system. Relating advances in magnetospheric physics to the framework of substorm research, this review paper demonstrates that the “recent” space age since 1960s consisted of (1) an exploratory/discovery phase in which the magnetotail, the plasma sheet, and the acceleration region of auroral particles were identified, and (2) a phase of comprehensive understanding in which we have attempted to comprehend the nature and significance of the near-Earth space environment. This progress in solar-terrestrial physics has coincided with a number of new discoveries of solar and interplanetary phenomena such as magnetic clouds, coronal mass ejections and coronal holes. Computer simulation techniques have been developed to the degree that satellite observations from a very limited number of points can be used to trace and reproduce the main energy processes. We are now entering a new phase in which we hope to be able to predict the dynamic processes that take place in the solar-terrestrial environment.  相似文献   

11.
12.
本文讨论了一种地球磁层的亚暴机制。当行星际磁场有大的南向分量时,磁层的位形可由基本闭式转变为开式。磁鞘中的阿尔文波可以携带超过10~(18)尔格/秒的能流传入磁层尾部,并将能量耗散于等离子体片中。等离子体片中的粒子被加热和加速后,注入近地空间,产生环电流和极区亚暴。计算了剪切流场中阿尔文波的传播过程,以及磁层中阿尔文波的耗散。将本文的结算与[4]中的结果合在一起,可以说明当行星际磁场转向南时,容易发生地球磁层亚暴,但这两者并非一一对应的关系,行星际磁场没有南向分量时也可以发生地球磁层亚暴。  相似文献   

13.
A model of alignment of the field-aligned current generator system in the disturbed magnetosphere is proposed. It has been found that Pedersen currents in the disturbed ionosphere of the auroral oval are meridional. They connect oppositely directed field-aligned currents (FACs) of two adjacent Iijima and Potemra (IP) regions. This supplements the dominant concept of currents in the literature, in which a substorm current wedge plays a major role. During the considered substorm, graphs have been obtained of changes in FAC intensities in each of the three Iijima and Potemra regions of the Northern Hemisphere. These new data suggest that during a disturbance, the Region 1 FAC and the sum of regions 2 and 0 FACs remain equal. The equality means that these three generators form a unified system. Inequalities of intensities between two FACs of different sign simultaneously observed in the dawn and dusk sectors have also been detected in each IP region. A conceptual model is proposed for the formation of this dawn-dusk asymmetry. In the model, in addition to FACs that close up in the ionosphere of the Northern Hemisphere, FACs connecting the two hemispheres are also presented. The conclusion is justified that the global magnetospheric dynamo operates as a voltage generator under relatively quiet (average) conditions, as during storms.  相似文献   

14.
The results of studying the simultaneous observations of burst regimes of long-period irregular pulsations at frequencies of 2.0–6.0 mHz (the series of ipcl bursts) in the region of the dayside polar cusp and magnetic field disturbances in the nightside auroral oval are presented. The data on the magnetic field at Mirny (MIR, Φ = 76.93°; Λ = 122.92°) and Yellowknife (YKC, Φ = 69.94°; Λ = 294.38°) antipodal observatories as well as the AE index values (http://www.cetp.ipsl.fr/~isgi/homepag1.htm) have been used in an analysis. It has been found out that 87% (group I) and 13% (group II) of events were registered against a back-ground of substorm activity and a quiet nightside magnetosphere, respectively. It has been revealed that several morphological characteristics of the group-I and -II ipcl bursts differ depending on the conditions in the nightside magnetosphere. It has been indicated that the intervals between peaks and the amplitudes of ipcl bursts of both types are distributed according to the exponential and power laws. The results indicate that magnetospheric plasma turbulence develops in the region where burst regimes are formed. It is assumed that the substorm processes in the magnetotail manifest themselves in plasma turbulence in the dayside cusp.  相似文献   

15.
A review of the observed space scales of the auroral features ranging from the whole auroral oval of bright discrete forms down to the nonlinear moving solitary structures with the scales of the order of Debye length is given. The characteristic physical scale which determines the generation process is indicated whenever possible. Some problems of the auroral theory and modeling are briefly discussed, and a cross-scale coupling between the auroral and magnetospheric altitudes is stressed. It becomes apparent that the first in situ studied real astrophysical plasma object—the Earth's magnetosphere/ionosphere/aurora—is a unified multi-scale system which seems to be ordered at large scales, but sometimes looks as nearly nondeterministic, or chaotic, at small scales. The most powerful processes in this system operate in a very wide range of scales, with multifarious cross-scale couplings. The statistical behavior of magnetospheric/auroral plasmas in the regions of active auroras often can be reasonably described as the near-critical state.  相似文献   

16.
Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the “electric field-dominant” and “conductivity-dominant” auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions.  相似文献   

17.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

18.
19.
地基观测的夜侧极光对行星际激波的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
行星际激波与地球磁层相互作用通常会导致日侧极光活动增强,随后沿着极光卵的晨昏两侧向夜侧扩展的激波极光.行星际激波也可能直接导致夜侧扇区极光活动增强,甚至沉降粒子能通量的数量级可以与典型亚暴相比拟.本文首次利用我国南极中山站和北极黄河站连续多年积累的极光观测数据,对行星际激波与地球磁层相互作用期间地面台站在夜侧扇区(18—06MLT)观测的极光响应进行了分析.对18个极光观测事件的分析结果表明:行星际激波与磁层相互作用可以在夜侧触发极光爆发和极光微弱增强或静态无变化事件;太阳风-磁层能量耦合的效率以及磁层空间的稳定性决定着行星际激波能否触发极光爆发.  相似文献   

20.
On the basis of observations for the IGY period (visoplots) it is shown, that during magnetic storms diffuse glow is detected at all latitudes between the lowest latitude of the visually observed auroral glow at the zenith and the auroral oval. The diffuse glow region spatially coincides with the region of soft electron precipitation extending equatorward from the boundary of the oval to the latitude of the plasmopause projections along the magnetic force lines to the ionosphere. Using published materials on the diffuse glow dynamics and SAR arcs at the Yakutsk meridian, as well as simultaneous measurements of the DMSP F9 satellite, we discuss the contribution from low-energy electron precipitation transfered via convection toward Earth from the magnetosphere’s plasma sheet to excitation of 630.0 nm emission in low-intensity (<1.0 kR) SAR arcs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号