首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Villa Olmo Conglomerate (lower member of the Como Conglomerate Formation, Gonfolite Lombarda Group, Southern Alps, Italy) represents the first coarse clastic inputs into the Oligocene Southalpine Foredeep. A number of techniques including sedimentary lithofacies analyses, clast counts on turbidite conglomerate bodies, sandstone petrography through Gazzi–Dickinson point‐count method and XRF analyses, and optical and minero‐chemical analyses on single clasts have been performed, in order to better define the sediment source area and geodynamic conditions which promoted sedimentation in the Southalpine Foredeep at the end of the Oligocene. The Villa Olmo Conglomerate interdigitates with the upper part of the Chiasso Formation, and gradually passes upward into the overlying Como Conglomerate Formation. Provenance analyses (conglomerate clast counts and sandstone petrography) reveal a strong metamorphic provenance signal, likely sourced from eroded Southalpine basement. An increase in igneous plutonic clasts reflects sediment supply from the Southern Steep Belt and a decrease of volcano‐sedimentary Mesozoic cover sequences. Optical and minero‐chemical analyses on volcanic detritus detect the presence of sub‐intrusive to effusive, andesite to rhyolite products, ascribable to the Varese‐Lugano Permian volcanoclastic suite, as well as Oligocene andesite products. Plutonic clasts document the presence of tonalites, granites, and brittle deformed granodiorites (with two micas), being likely sourced from the tonalite tail of the Bergell Pluton and the plutonic units of the Bellinzona‐Dascio Zone. The identification of this provenance suite implies palaeo‐drainage from the region between Varese (Southern Alps) and the Bellinzona‐Dascio Zone (Central Alps). The Villa Olmo Conglomerate is the first depositional record of the onset of tectonically driven erosion in the Alpine belt. We infer that the previous low sediment budget regime (Eocene–Middle Oligocene) was a consequence of a tectonically controlled melting phase, during which tectonic events promoted magmatic production in the middle crust of the Central Alps at rates higher than those of crustal deformation, so inhibiting sediment production. We conclude that changes in the deep structures of the Alpine Orogenic chain have controlled the main geodynamic processes during Oligocene–Neogene times, and have controlled sediment composition and supply into the Southalpine Foredeep. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
《Sedimentary Geology》2001,139(3-4):217-228
The clastic wedge of the Gonfolite Lombarda Group (GLW) accumulated during Oligocene–Miocene times in the Southern Alps foreland basin, formed on the southern, inner side of the Alpine belt. It represents the depositional counterpart of the exhumation and erosion of the Central Alps metamorphic–magmatic units.Among the Central Alps units, the Tertiary Bergell Intrusion (TBI) is one of the principal sources of pebbles occurring within the GLW. Geochronologic data, both from intrusive pebbles and present-day outcrops of intrusive rocks, document the rapid uplift history of the GLW source area.The lower Gonfolite clastic wedge (Como Conglomerate and Val Grande Sandstone Formations, Oligocene–Early Miocene) has been investigated through the study of sandstone and conglomerate petrology for detecting the effects in the sedimentary record of this collision-related event.The main results are: (i) sandstone petrology of the Como Conglomerate records an evolution from feldspatholithic to feldspathic sandstones; (ii) the related Q/F–F/L ratios suggest an evolution from a mixed plutonic–metamorphic to a mainly plutonic source; (iii) consistently, conglomerate petrology records a progressive increase of plutonic pebbles (from nearly 0–50% of the total), a corresponding decrease of metamorphic clasts (from nearly 80 to nearly 50%) and the disappearance of cover rock fragments. Considering the high relief/short transport setting of the GLW clastic routing system, these values probably resemble the real proportions of such rocks in the Gonfolite catchment area.During the Aquitanian, the return to a metamorphic-rich source is recorded both by sandstones and conglomerates at the top of the Como Conglomerate and in the Val Grande Sandstone. This last signal is interpreted as the result of the reorganisation of the Gonfolite source area, possibly related to the northward shift of the main Alpine divide.  相似文献   

3.
The main steps of the sedimentary evolution of the west Lombardian South Alpine foredeep between the Eocene and the Early Miocene are described. The oldest is a Bartonian carbonate decrease in hemipelagic sediments linked with an increase in terrigenous input, possibly related to a rainfall increase in the Alps. Between the Middle Eocene and the early Chattian, a volcanoclastic input is associated with an extensional tectonic regime, coeval with magma emplacement in the southern-central Alps, and with volcanogenic deposits of the European foredeep and Apennines, suggesting a regional extensional tectonic phase leading to the ascent of magma. During Late Eocene to Early Oligocene, two periods of coarse clastic sedimentation occurred, probably controlled by eustasy. The first, during Late Eocene, fed by a local South Alpine source, the second, earliest Oligocene in age, supplied by the Central Alps. In the Chattian, a strong increase in coarse supply records the massive erosion of Central Alps, coupled with a structures growth phase in the subsurface; it was followed by an Aquitanian rearrangement of the Alpine drainage systems suggested by both petrography of clastic sediments and retreat of depositional systems, while subsurface sheet-like geometry of Aquitanian turbidites marks a strong decrease in tectonic activity.  相似文献   

4.
Balancing lateral orogenic float of the Eastern Alps   总被引:2,自引:0,他引:2  
Oligocene to Miocene post-collisional shortening between the Adriatic and European plates was compensated by frontal thrusting onto the Molasse foreland basin and by contemporaneous lateral wedging of the Austroalpine upper plate. Balancing of the upper plate shortening by horizontal retrodeformation of lateral escaping and extruding wedges of the Austroalpine lid enables an evaluation of the total post-collisional deformation of the hangingwall plate. Quantification of the north–south shortening and east–west extension of the upper plate is derived from displacement data of major faults that dissect the Austroalpine wedges. Indentation of the South Alpine unit corresponds to 64 km north–south shortening and a minimum of 120 km of east–west extension. Lateral wedging affected the Eastern Alps east of the Giudicarie fault. West of the Giudicarie fault, north–south shortening was compensated by 50 to 80 km of backthrusting in the Lombardian thrust system of the Southern Alps. The main structures that bound the escaping wedges to the north are the Inntal fault system (ca. 50 km sinistral offset), the Königsee–Lammertal–Traunsee (KLT) fault (10 km) and the Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault system (60 km). These faults, as well as a number of minor faults with displacements less than 10 km, root in the basal detachment of the Alps. The thin-skinned nature of lateral escape-related structures north of the SEMP line is documented by industry reflection seismic lines crossing the Northern Calcareous Alps (NCA) and the frontal thrust of the Eastern Alps. Complex triangle zones with passive roof backthrusts of Middle Miocene Molasse sediments formed in front of the laterally escaping wedges of the northern Eastern Alps. The aim of this paper is a semiquantitative reconstruction of the upper plate of the Eastern Alps. Most of the data is published elsewhere.  相似文献   

5.
In the past15 years,the Cenozoic calcareous nannofossilsin the East China Sea were biostratigraphically studied duringthe extensive offshore petroleum exploration in a number ofbasins on the shelf of the East China Sea.A number of Pale-ocene to Quaternary nannofossil zones were recognized basedon the nannofossils from m any offshore wells (SBMGS,1989,1985 ) .These previous studies indicated a lot of biostratigraphicproblems,resulting in difficulties in the understanding of afurther detail…  相似文献   

6.
Abstract

Two groups of stretching lineations can be distinguished in the Central Alpine " root zone " between Ticino and Mera :

1) Steeply plunging lineations formed during retrograde metamor-Phism under amphibolite/greenschist facies conditions indicate an uplift movement of the Central Alps. The lineations can be related to an important back-thrusting event of late Oligocene/early Miocene age.

2) Gently plunging lineations formed under lower greenschist facies conditions display a pattern typical of a dextral strike-slip system. These lineations are of early Miocene age.

This cpmbined movement, achieved by ductile deformation along the lnsubric line was followed by a stage of brittle deformation in a dextral strike-slip system (= Tonale line).

The signification of this interpretation is shown in a new crustal cross section through the Central Alpine/Southern Alpine border zone in the Iicino area.  相似文献   

7.
The combination of magmatic, structural and fission track (FT) data is used to unravel Oligocene/Miocene near-surface tectonics in the internal Western Alps. This includes reburial of parts of the already exhumed Sesia-Lanzo Zone and their subsequent re-exhumation. We define blocks mainly on the base of their Oligocene–Miocene cooling history (FT data) and on published paleomagnetic data. The preservation of a paleosurface allows a detailed reconstruction of the exhumation, burial and re-exhumation of different tectonic blocks. Near-surface, rigid block rotation is responsible for the reburial of the Lower Oligocene paleosurface in part of the Sesia-Lanzo Zone (the Cervo Block) and for the conjugate uplift of deeper portions of the Ivrea-Verbano Zone (the Sessera-Ossola Block). This block rotation around the same horizontal axes produces in the currently exposed portions of the two blocks, quite different temperature/time paths. While the surface of the Cervo Block is buried, the lower part of the Sessera-Ossola Block is uplifted. The rotation is constrained between the age of emplacement of the Biella Volcanic Suite on top of the Sesia-Lanzo Zone (32.5?Ma) and the intrusion of the Valle del Cervo Pluton (30.5?Ma). After this relative fast movements, the concerned blocks remained in (or underneath) the partial annealing zone of zircon until in Aquitanian times they were rapidly uplifted into the partial annealing zone of apatite. The further stage of exhumation out of the partial annealing zone of apatite extends over the entire Miocene. At that time, units of the external Western Alps underwent fast exhumation (external Brian?onnais, Valais). In addition to the well-known post-collisional deformation in the axial- and external Western Alps, the internal units (i.e., the upper plate) hold an apparent stable position in terms of exhumation.  相似文献   

8.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

9.
 The combined information about the stratigraphies from the foreland basins surrounding the Swiss Alps, exhumation mechanisms and the structural evolution of the Alpine orogenic wedge allow an evaluation of the controls of erosion rates on large-scale Alpine tectonic evolution. Volumetric data from the Molasse Basin and fining-upward trends in the Gonfolite Lombarda indicate that at ∼20 Ma, average erosion rates in the Alps decreased by >50%. It appears that at that time, erosion rates decreased more rapidly than crustal uplift rates. As a result, surface uplift occurred. Because of surface uplift, the drainage pattern of the Alpine hinterland evolved from an across-strike to the present-day along-strike orientation. Furthermore, the decrease of average erosion rates at ∼20 Ma coincides with initiation of a phase of thrusting in the Jura Mountains and the Southern Alpine nappes at ∼50 km distance from the pre-20-Ma thrust front. Coupled erosion-mechanical models of orogens suggest that although rates of crustal convergence decreased between the Oligocene and the present, the reduction of average erosion rates at ∼20 Ma was high enough to have significantly influenced initiation of the state of growth of the Swiss Alps at that time. Received: 8 June 1998 / Accepted: 30 October 1998  相似文献   

10.
Magnetostratigraphic studies in the Oligocene to Miocene north Alpine foreland basin of Switzerland suggest a post-middle Miocene (< 13 Ma) clockwise rotation of the Swiss Alps. The angle of rotation is 16–17° with respect to the present-day earth's magnetic field. This rotation can be observed in 12 sections analysed for palaeomagnetic directions which cover a lateral distance of ≈ 250 km (SW–NE extension). The rotation angle shows neither a significant change throughout the examined period of deposition, nor is it dependent on the tectonic position of the individual regions in the basin (autochthonous or allochthonous Molasse).  相似文献   

11.
The crustal plate of Southern Germany models, in a highly instructive way, the real behaviour of continental crustal plates in the immediate foreland of an active orogenic mountain belt. The frontier line between alpidic and outer-alpine strain pattern crossed this first order tectonic unit. During Upper Tertiary times, the crustal plate of Southern Germany shows an anticlockwise rotation of the direction of maximal principal stress (from NNE/SSW through NNW/SSE to NW/SE), nearly contemporaneous to the transition from alpine Flysch-to Molasse-to postorogenic sedimentation. From prae-Upper Cretaceous to Oligocene, NNE-SSW-plate movement follows a direction more or less parallel — not perpendicular — to the North Atlantic midocean ridge. Since the Pliocene, the axis of tectonic transport (a in rock fabrics nomenclature) turns to a more northwesterly-southeasterly position, so nearly becoming to the well known sea-floor spreading concept. But, at that time, alpine orogenesis comes to an end. Today, neither in the Alps nor in their foreland, any adequate subduction zone to counterbalance the opening of the North Atlantic (as supposed by means of paleomagnetic data) still exists. Since early Pliocene time, the Southern Germany crustal plate shows, in spite of the overburden by thick Molasse sediments, neither any subsidence nor underthrusting the Alps, but, on the contrary, uplifting in a magnitude up to more than fivehundred meters, while the opening of the North Atlantic seems to continue. So we find some serious inconsistencies between the so called new global tectonics and the tectonic evolution of the Southern Germany crustal plate.  相似文献   

12.
A significant change in composition was recorded in late Oligocene sediments from the northern South China Sea. This abrupt event coincided with the seafloor spreading axis jump across the Oligocene/Miocene boundary, leading to sedimentation breaks and slumps as well as obvious changes in sediment geochemical composition, and representing the greatest tectonic activity in the South China Sea region since the Oligocene. Through this tectonic event, the sedimentary environment in the Baiyun sag area transformed from a continental shelf in the late Oligocene to a continental slope since the early Miocene, the provenance of the sediments changed from neighboring areas to the hinterland of the South China block, and the sea level rose since the early Miocene in the area. Therefore, this abrupt change event has a profound influence on the evolution of petroleum offshore in the northern South China Sea. __________ Translated from Geology in China, 2007, 34(6): 1022–1031 [译自: 中国地质]  相似文献   

13.
40Ar/39Ar single-grain laserprobe dating of detrital white micas from early Oligocene to middle Miocene (31–14 Ma) sedimentary rocks of the central Swiss Molasse basin reveals three distinct clusters of cooling ages for the hinterland. Two Palaeozoic age clusters reflect cooling after the Variscan orogeny with only limited reheating during the Alpine orogeny. The third Tertiary age cluster reflecting late Alpine cooling is restricted to sediments younger than 20 Myr old. Micas with cooling ages < 30 Myr are interpreted to originate from the footwall of the Simplon detachment fault, thus representing formerly exposed upper levels of the present-day Lepontine metamorphic dome. Erosion of these levels is reflected by an increase of low-grade metamorphic lithic grains in the sandstones. This interpretation puts constraints on the timing of exhumation as well as on the evolution of the drainage pattern of the Central Alps.  相似文献   

14.
Paleofloristic data imply that paleoclimate changed in the Swiss Alps at the Oligocene/Miocene boundary from humid and hot conditions toward a climate with high temperature and low humidity. The aridization is associated with a change in depositional pattern from alluvial fans to lakes and floodplains, suggesting decreasing sediment discharge. A further 25-40% decrease of sediment discharge occurred at ca. 20 Ma when the orogenic core of the Alps became exposed to the surface. We applied a surface processes model to explore potential controls on the pattern of sediment discharge and on the evolution of the Alpine drainage basin. The model is based on the presumption that the rates of fluvial incision into bedrock are proportional to shear-stress exerted by the flowing water. The model results imply that the paleoclimate change resulted in an instantaneous decrease of sediment discharge and a vertical topographic growth until steady-state conditions between erosional and crustal mass flux are established. However, exposure of the crystalline core of the Alps at ca. 20 Ma is likely to have resulted in the 25-40% decrease of sediment discharge and the reorganization of the drainage pattern from an orogen-normal to an orogen-parallel orientation of dispersion.  相似文献   

15.
The traverse of the Central Alps between Lake Constance and Lake Como (eastern Switzerland, northern Italy) allows the reconstruction of a cross-section through a collision belt some 140 km wide and 40 km deep. It can be described in terms of a series of structural zones (A–F), defined by the age and character of the latest phase of penetrative deformation affecting both basement and cover rocks, each zone showing a characteristic structural history. These zones do not coincide with the well-known tectono-stratigraphic Alpine subdivisions (Helvetic, Pennine, Austroalpine) which are based on gross geometry, facies and petrography. Zones A and B, in the north, developed during late Oligocene and Miocene times, affecting the Helvetic realm and the already overlying Pennine and Austroalpine units. Zone A is characterized by a steeply dipping penetrative cleavage SA, zone B by the same cleavage later modified by nappe-forming movements. Zone F, in the south, also developed during the late Oligocene and Miocene, first as a monoclinal flexure, later as a steeply dipping zone of mylonitization and cataclasis (foliation Sf), affecting Pennine and Austroalpine units. The final manifestation of these movements was the Tonale line and their net result was the uplift of the region to the north by about 20 km. Between these two belts lay an area in which late Oligocene-Miocene movements had little effect — structural zones C (Pennine), D (Pennine-Austroalpine transition) and E (Austroalpine). In zones C and D, the latest phase of penetrative deformation, resulting in large recumbent fold structures and a penetrative foliation Sc zone C, can be dated as late Eocene-early Oligocene. This seems to be related to the overriding of the Austroalpine nappe complex (zone E), which already showed the effects of a late Cretaceous orogeny.Unravelling these events backwards, reveals, at the Eocene—Oligocene boundary, a southward dipping subduction zone in the process of locking. Its mouth is full of upper Cretaceous-Eocene flysch; its throat is choked by the Pennine nappe complex, undergoing the sc ductile deformation. Before subduction, the Pennine nappe complex can best be described as a mega-mélange-a tectonic mixture of large fragments of continental basement, oceanic basement, trough-facies cover and platform-facies cover, already showing a complicated structural history. It is supposed that collision started in mid-Cretaceous times, not at a single subduction suture (trench), but by complicated surficial processes across a wide zone, as non-matching, rifted and thinned continental margins approached and small oceanic remnants were obducted. Post-mid-Oligocene events are essentially intra-plate compressional effects, combined with isostatic response.  相似文献   

16.
Fission track dating on detrital zircons of Alpine debris in the Swiss molasse basin provides information about the erosion history of the Central Alps and the thermal evolution of source terrains. During Oligocene times, only sedimentary cover nappes, and Austroalpine basement units were eroded. Incision into Austroalpine basement units is indicated by increasing importance of Cretaceous cooling ages in granite pebbles upsection. Erosion of Penninic basement units started between 25 and 20 Ma. Early Oligocene zircon FT ages show that Penninic basement units were exposed at ∼20 Ma. Deeper Penninic units of the Lepontine Dome became exposed first at ∼14 Ma, contemporaneously with the opening of the Tauern window in the Eastern Alps. A middle Miocene cooling rate of 40 °C Myr−1 is deduced for the Lower Penninic units of the Lepontine Dome.  相似文献   

17.
An exhumed crustal section of the Mesozoic Torlesse terrane underlies the Southern Alps collision zone in New Zealand. Since the Late Miocene, oblique horizontal shortening has formed the northeastern–southwestern trending orogen and exhumed the crustal section within it. On the eastern side, rocks are zeolite- to prehnite–pumpellyite-grade greywacke; on the western side rocks, they have the same protolith, but are greenschist to amphibolite facies of the Alpine Schist. Zircon crystals from sediments in east-flowing rivers (hinterland) have pre-orogenic fission-track ages (>80 Ma) and are dominated by pink, radiation-damaged grains (up to 60%). These zircons are derived from the upper 10 km crustal section (unreset FT color zone) that includes the Late Cenozoic zircon partial annealing zone; both fission tracks and color remain intact and unaffected by orogenesis. Many zircon crystals from sediments in west-flowing rivers (foreland) have synorogenic FT ages, and about 80% are colorless due to thermal annealing. They have been derived from rocks that originally lay in the reset FT color zone and the underlying reset FT colorless zone. The reset FT color zone occurs between 250 and 400 °C. In this zone, zircon crystals have color but reset FT ages that reflect the timing of orogenesis.  相似文献   

18.
Thomson 《地学学报》1998,10(1):32-36
Fission-track thermochronology applied to the nappe pile of the Calabrian Arc of southern Italy, particularly within the continental basement rocks, has provided important new constraints on the nature of some of the tectonic contacts. In southern Calabria an important phase of lower Miocene crustal extension is indicated. In northern Calabria no Oligocene or younger extension is seen. Here, the emplacement of continental basement rocks with Alpine metamorphism over ophiolitic rocks with little or no metamorphism is constrained as a thrust of lower to middle Miocene age related to collision of the Calabrian Arc with the Adria plate margin. It is proposed that reduction in the plate convergence velocity during collision of a retreating subduction zone with a continental margin is, at least partly, an explanation for the onset of extension in southern Calabria during the Miocene.  相似文献   

19.
Basic concepts of structural restoration are applied to crustal cross-sections through mountain belts to explore large-scale tectonic models and deep structure. However, restored sections should account for variations in pre-orogenic crustal thicknesses. Crustal balancing approaches are reviewed and applied to two Alpine sections, coinciding with deep seismic experiments: NRP-20 East (Central Alps) and ECORS-CROP (Western Alps). Existing studies assume large (>300 km) orogenic contraction and only moderately thinned pre-orogenic crust. The resulting restored sections contain more crust than is imaged beneath the present-day Alps, the missing crust generally assumed to be subducted. Two kinematic modifications reduce the requirement for subduction: thinning and buoyancy-driven return flow of ultra-high-pressure metamorphic rocks during orogenesis; and pre-orogenic hyperextension. Using large stretching factors for the pre-orogenic crust negates crustal subduction on both Alpine transects. If the lower crust was approximately rigid, restorations of the Central Alps require strongly depth-heterogeneous stretching of upper and lower crust during Mesozoic rifting. Relaxing this requirement allows uniform lithospheric stretching, a corollary consistent with published subsidence estimates. Restorations make implicit statements on the form of pre-orogenic basins and the structure of continental margins incorporated into mountain belts that can in turn provide tests of tectonic models.  相似文献   

20.
Three-dimensional modelling tools are used with structural and palaeomagnetic analysis to constrain the tectonic history of part of the Dauphiné zone (external Western Alps). Four compressive events are identified, three of them being older than the latest Oligocene. Deformation D1 consists of W–SW directed folds in the Mesozoic cover of the study area. This event, better recorded in the central and southern Pelvoux massif, could be of Eocene age or older. Deformation D2 induced N-NW-oriented basement thrusting and affected the whole southern Dauphiné basement massifs south of the study area. The main compressional event in the study area (D3) was WNW oriented and occurred before 24 Ma under a thick tectonic load probably of Penninic nappes. The D2-D3 shift corresponds to a rapid transition from northward propagation of the Alpine collision directly driven by Africa-Europe convergence, to the onset of westward escape into the Western Alpine arc. This Oligocene change in the collisional regime is recorded in the whole Alpine realm, and led to the activation of the Insubric line. The last event (D4) is late Miocene in age and coeval with the final uplift of the Grandes Rousses and Belledonne external massifs. It produced strike-slip faulting and local rotations that significantly deformed earlier Alpine folds and thrusts, Tethyan fault blocks and Hercynian structures. 3D modelling of an initially horizontal surface, the interface between basement and Mesozoic cover, highlights large-scale basement involved asymmetric folding that is also detected using structural analysis. Both, Jurassic block faulting and basement fold-and-thrust shortening were strongly dependent on the orientation of Tethyan extension and Alpine shortening relative to the late Hercynian fabric. The latter’s reactivation in response to oblique Jurassic extension produced an en-échelon syn-rift fault pattern, best developed in the western, strongly foliated basement units. Its Alpine reactivation occurred with maximum efficiency during the early stages of lateral escape, with tectonic transport in the overlying units being sub-perpendicular to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号