首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple method to derive spatial precipitation (P) and evapotranspiration (ET) for the typical steppe of the Xilin river catchment at 1 km and 8-day resolution during the main vegetation period (23 April to 28 August) of 2006. The hydrological model BROOK90 was parameterised from eddy covariance measurements. The daily model input data, precipitation, minimum (Tamin) and maximum air temperature (Tamax), were derived by manipulating MODIS leaf area index (LAI) and surface temperature data. P was estimated based on a linear regression of P measured at several sites against the mean gain of the MODIS LAI of surrounding 3 × 3 pixels areas (R2 = 0.76). Tamin and Tamax were derived using a relationship between measured Tamin and Tamax and MODIS surface temperatures (R2 = 0.92 and R2 = 0.88, respectively). The mean precipitation was 145 mm; it varied between 52 mm in the north-western region and 239 mm in the eastern region. In spring, the modelled ET was low (<0.8 mm d−1); evaporation dominated over transpiration and spatial differences were small. At the end of June, the mean ET reached its maximum (2 mm d−1) and spatial differences were pronounced. From July on, transpiration dominated over declining evaporation, and spatial differences decreased in August.  相似文献   

2.
Based on the static opaque chamber method,the respiration rates of soil microbial respiration,soil respiration,and ecosystem respiration were measured through continuous in-situ experiments during rapid growth season in semiarid Leymus chinensis steppe in the Xilin River Basin of Inner Mongolia,China. Soil temperature and moisture were the main factor affecting respiration rates. Soil temperature can explain most CO2 efflux variations (R2=0.376-0.655) excluding data of low soil water conditions. Soil moisture can also effectively explain most of the variations of soil and ecosystem respiration (R2=0.314-0.583),but it can not explain much of the variation of microbial respiration (R2=0.063). Low soil water content (≤5%) inhibited CO2 efflux though the soil temperature was high. Rewetting the soil after a long drought resulted in substantial increases in CO2 flux at high temperature. Bi-variable models based on soil temperature at 5 cm depth and soil moisture at 0-10 cm depth can explain about 70% of the variations of CO2 effluxes. The contribution of soil respiration to ecosystem respiration averaged 59.4%,ranging from 47.3% to 72.4%; the contribution of root respiration to soil respiration averaged 20.5%,ranging from 11.7% to 51.7%. The contribution of soil to ecosystem respiration was a little overestimated and root to soil respiration little underestimated because of the increased soil water content that occurred as a result of plant removal.  相似文献   

3.
 格局和过程与异质性有关。以呼伦贝尔克氏针茅草原不同放牧强度下的演替群落为对象,开展群落植被空间分布格局及土壤有机质空间异质性研究。结果显示,不同放牧强度样地群落结构和群落种类组成存在明显差异。轻度放牧样地样方内有8种植物,群落优势种为克氏针茅(Stipa krylovii);中度放牧样地样方内有12种植物,群落优势种为糙隐子草(Cleistogenes squyarrosa);而重度放牧样地样方内只有7种植物,群落优势种为多根葱(Allium polyrhizum)。随放牧强度的增强,植被地上生物量及其变异系数逐渐降低;土壤有机质含量表现为轻度放牧>中度放牧>重度放牧,而其变异系数表现为中度放牧>轻度放牧>重度放牧。从植被地上生物量和土壤有机质含量变异函数分析来看,随放牧压力的增大,植被地上生物量空间自相关性增强,空间异质性变大;土壤有机质含量空间分布自相关性先增强,然后减弱,空间变异性先变大,然后变小。在10 cm×10 cm的微尺度上,重牧群落植被地上生物量和土壤有机质含量之间表现出明显的相关性(P<0.05)。  相似文献   

4.
Present-day Sahelian vegetation in a highly anthropized semi-arid region is assessed from local to regional scales, through the joint analysis of MODIS LAI (1 km2 and 8-day resolutions), daily rainfall, morphopedological and land cover datasets covering the period 2000–2008. The study area is located in northwest Senegal and consists of the “Niayes” and the northwestern “Peanut Basin” eco-regions, characterized by market gardening and rain-fed cultivated crops, respectively. The objectives are i) to analyse at pixel scale LAI time series and their relation to vegetation and soil types, ii) the estimation of phenological metrics (start of season SOS, end of season EOS, growing season length GSL) and their inter-annual variability, iii) to recognize the vegetation responses to rainfall trends (mean annual precipitation, MAP; frequency of rainy events, K; combination of MAP and K, called F).Pixel-scale analyses show that LAI time series 1) describe the actual phenology (agreeing with ground-truth AGHRYMET data), and thus can be used as a proxy for Sahelian vegetation dynamics, 2) are strongly dependent on soil types. Median maps of SOS and EOS suggest an increase of the GSL from Saint-Louis to Dakar, in agreement with both the North-South rainfall gradient and the intensification of agricultural practices around Dakar. Significant correlations (R: 0.64) between annual variation coefficient of LAI and MAP for both herbaceous crops and natural vegetation are highlighted; this correlation is reinforced (R: 0.7) using the rainfall distribution factors K and F. Rainfall thresholds allowing the SOS can be defined for each type of vegetation. These thresholds are estimated at 0–5 mm, 20 mm and 40 mm for natural herbs, herbaceous crops and shrublands, respectively.If previous works revealed the close link between the MAP and the SOS, our results highlight that LAI dynamics are also controlled by rainfall distribution during the Monsoon season. In this study, climatic indicators are proposed for estimating vegetation dynamics and monitoring SOS. Coupling Earth Observation data, such as MODIS LAI, with rainfall data, vegetation and soil information is found to be a reliable method for vegetation monitoring and for assessing the impact of human pressure on vegetation degradation.  相似文献   

5.
Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it im-proves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and mathematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14% less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.  相似文献   

6.
We examined large-scale climatic and small-scale biotic and abiotic factors affecting Pinus jeffreyi (Pinaceae) seedling establishment at its low-elevation boundary along the conifer forest-sagebrush steppe ecotone in eastern California, USA. In three successive growing seasons, P. jeffreyi seedlings were planted in three microhabitats (under Artemisia tridentata or Purshia tridentata canopies, and in open intershrub spaces) at a site within the ecotone (2300 m) and at a lower-elevation site (2200 m). We measured Photosynthetically Active Radiation (PAR; 400–700 nm), soil moisture and temperature, and air temperature in the three microhabitats, and monitored seedling survival, drought stress, and herbivory. At both sites, soil moisture decreased two- to six-fold between May and August of each summer. Maximum and minimum daily air temperatures were higher and lower, respectively, in intershrub areas, as were maximum daily soil temperatures and maximum daily PAR. At the ecotone site, mean P. jeffreyi seedling survival was longest following a very wet winter and shortest following a dry winter. For both elevations, seedlings had shorter survival times in intershrub microsites as compared to shrub microsites. Drought and herbivory both influenced seedling mortality within each microhabitat, but drought was the major determinant of seedling mortality by the end of each summer.  相似文献   

7.
遥感蒸散模型的时间重建方法研究   总被引:13,自引:1,他引:12  
本文提出的遥感蒸散模型的时间重建方法考虑了逐日蒸散可能的变化情况, 在阻抗- 彭曼单层模型的基础 上, 将图像去云处理与时间重建结合在一起, 先使用SEBS 能量平衡余项模型获得晴好日的地表阻抗信息, 选择了 叶面积指数LAI 作为反映植被表面阻抗的参量, 通过时间序列谐波分析(HANTS)获得逐日逐像元的LAI 信息, 将晴 好日的阻抗信息扩展至待定日, 并使用因子函数表达了极端温湿条件对植被叶面阻抗的限制作用。使用中科院禹 城站2003 年作物季的大型蒸渗仪数据对模型所得逐日蒸散结果进行了验证。在作物生长季, 模型结果相对于实测 结果表现出了良好的相关性(R2≈0.7), 远优于作为对比的蒸发比不变法。受单层模型假设局限, 方法在裸地及稀疏 植被上的结果还存在着较大的误差。  相似文献   

8.
草原群落蒸发蒸腾是一个由多种因素综合影响的复杂问题。本文在天然羊草草原上,以畜群点为中心由外向内,选择退化程度不同的放牧空间梯度系列替代退化演替时间梯度系列,用土柱称重法进行群落蒸发蒸腾观测,深入分析了羊草草原退化群落蒸发蒸腾的变化规律。得出:天然羊草草原在土壤供水较为充足的情况下,随着放牧强度的增加,群落生物量减少,盖度减少,蒸腾减少,蒸发增加,但蒸散减少不明显。  相似文献   

9.
The continuous increase of livestock production in Inner Mongolia has caused severe degradation of the grassland ecosystems in recent years. Previous grazing experiments have shown a wide range of vegetation responses between the biome types on a global scale, but there is still a lack of sufficient studies to discern the relative responses of a given biome type. We conducted a meta-analysis of vegetation coverage (VC), plant density (PD), total biomass (TB), above-ground biomass (AGB), under-ground biomass (UGB) and Shannon-Weaver Index (SI) in different grassland types in Inner Mongolia obtained under conditions of different grazing intensities and durations. The results showed that grazing decreased VC, TB, AGB, UGB, and PD significantly. Compared to the global and national average values, the negative effects of grazing to steppe biomass in Inner Mongolia were higher than that on the global scale, while less pronounced than that in China. TB of the meadow steppe in Inner Mongolia increased by 40% under moderate grazing intensity and duration because of compensatory growth. SI of the desert and meadow steppe showed negative linear relationships with the grazing intensity in Inner Mongolia. The percentage changes in AGB, PD, and SI to grazing showed quadratic relationships with the mean annual temperature of the experimental year. With increasing mean annual precipitation, the negative effects of grazing on UGB and SI first decreased and then increased, with that of VC and grazing showing a cubic relationship.  相似文献   

10.
Qinghai spruce (Picea crassifolia) forests play an important role in regulating the regional water balance of the Qilian Mountains in northwestern China. The objective of this study was to estimate evapotranspiration (ET) of the Qinghai spruce forest in the middle section of the Qilian Mountains. A modified Penman-Monteith equation was used to simulate two sub-components of ET: canopy transpiration (Et) and soil evaporation (Es). The third sub-component of ET, canopy interception evaporation (Ei), was directly measured. The results show that the total ET of the Qinghai spruce forest was 313.6 mm during the 2008 growing season (from May 1 to September 30). Ei, Et, and Es were 100.9 mm, 160.8 mm and 51.9 mm, and accounted for 32.2%, 51.3% and 16.5% of the total ET, respectively. The total modeled ET during the 2008 growing season is acceptably consistent with the directly measured ET (298.2 mm) by eddy covariance system. The consistency implies that the modified Penman-Monteith equation is an effective method to estimate ET using conventional meteorological data with additional measurements of net radiation, and the method can thus be applied to similar situations where reliable direct measurements are not practical.  相似文献   

11.
Inter-annual variability in total precipitation can lead to significant changes in carbon flux. In this study, we used the eddy covariance (EC) technique to measure the net CO2 ecosystem exchange (NEE) of an alpine meadow in the northern Tibetan Plateau. In 2005 the meadow had precipitation of 489.9 mm and in 2006 precipitation of 241.1 mm, which, respectively, represent normal and dry years as compared to the mean annual precipitation of 476 mm. The EC measured NEE was 87.70 g C m-2 yr-1 in 2006 and -2.35 g C m-2 yr-1 in 2005. Therefore, the grassland was carbon neutral to the atmosphere in the normal year, while it was a carbon source in the dry year, indicating this ecosystem will become a CO2 source if climate warming results in more drought conditions. The drought conditions in the dry year limited gross ecosystem CO2 exchange (GEE), leaf area index (LAI) and the duration of ecosystem carbon uptake. During the peak of growing season the maximum daily rate of NEE and Pmax and α were approximately 30%-50% of those of the normal year. GEE and NEE were strongly related to photosynthetically active radiation (PAR) on half-hourly scale, but this relationship was confounded by air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). The absolute values of NEE declined with higher Ta, higher VPD and lower SWC conditions. Beyond the appropriate range of PAR, high solar radiation exacerbated soil water conditions and thus reduced daytime NEE. Optimal Ta and VPD for maximum daytime NEE were 12.7℃ and 0.42 KPa respectively, and the absolute values of NEE increased with SWC. Variation in LAI explained around 77% of the change in GEE and NEE. Variations in Re were mainly controlled by soil temperature (Ts), whereas soil water content regulated the responses of Re to Ts.  相似文献   

12.
13.
The endangered river plain woodlands of semi-arid Central Asia provide numerous ecosystem services. Previous studies have focused mainly on changes in water supply and salinity as the underlying mechanisms of Populus euphratica woodland’s decline. We tested whether vegetative regeneration of P. euphratica serves as an alternative pathway to propagation from seeds for reproduction in a degraded tree steppe in northwestern China and whether this method also works on grazed sites. We measured the effects of different grazing pressures on tree growth, survival, and vegetative regeneration. When subjected to high or moderate grazing pressure, P. euphratica populations failed to regenerate vegetatively, indicating recruitment limitation. A 25% increase of grazing pressure decreased the ramet density to 50% and the ramet height to 25%, as well as reducing the average age of ramets to one year. As overgrazing seriously limits the potential of natural recovery of P. euphratica a balance between livestock grazing and the regeneration of the Tugai forests is needed to sustain positive effects of increasing water tables and floods on tree vitality and regeneration. To restore population structure, and to support early vegetative regeneration long-term livestock management interventions to exclude livestock from degraded and recovered land need to be developed.  相似文献   

14.
基于幂函数法则对放牧梯度上种群空间异质性的定量分析   总被引:3,自引:1,他引:2  
 在呼伦贝尔草原的克氏针茅群落选择轻牧、中牧、重牧3个不同的放牧梯度,沿着50 m样线设置100个50 cm×50 cm的L型样方,每个L型样方内划分4个25 cm×25 cm的S型样方,以物种出现的频度(p)作为植被空间分布的观测指标,采用幂函数法则对放牧梯度上草原植物群落物种的空间异质性进行了定量研究。结果表明,在不同放牧强度下,种类结构发生明显改变,轻度放牧区羊草和星状刺骨藜、中度放牧区藜和糙隐子草、重度放牧区猪毛菜和多根葱具有高的出现频度,群落物种数随着放牧压力的增大而减小。整体来看,放牧梯度上物种的空间分布呈现明显的聚集分布,物种空间异质性(δi)随着放牧强度的增大而增加,拟合于幂函数规律曲线;群落的空间异质性(δc)随着轻牧-中牧-重牧放牧演替的进展呈现降低趋势,种群个体分布呈现片断化特征。在群落内部各个种群具有不同的异质化分布特点,物种结构主要表现出密集型种群和疏散型种群两大类型。这些趋势与种群的繁殖策略、生活史对策、群落的再生产策略等生理与生态特性密切相关。  相似文献   

15.
On a local scale, topography influences microclimate, vegetation structure and the morpho-physiological attributes of plants. We studied the effects of microclimatic differences between NE- and SW-facing slopes on the water relations and hydraulic properties of two dominant shrubs of the Patagonian steppe in Argentina (Retanilla patagonica and Colliguaja integerrima). The NE-facing slope had higher irradiance and air saturation deficits and lower soil water availability and wind speed than the SW-facing slope. Predawn and midday ΨL and osmotic potentials were significantly lower in shrubs on the NE-facing slope. Osmotic adjustment and more elastic cell walls helped the plants to cope with a more xeric environment on NE-facing slope. Higher water deficits on NE-facing slope were partially compensated by a higher leaf and stem water storage. While stem hydraulic efficiency did not vary between slopes, leaf hydraulic conductance was between 40% and 300% higher on the NE-facing slope. Changes observed in leaf size and in SLA were consistent with responses to mechanical forces of wind (smaller and scleromorphic leaves on SW-facing slope). Morpho-physiological adjustments observed at a short spatial scale allow maintenance of midday ΨL above the turgor loss point and demonstrate that leaves are more responsive to microclimatic selective pressures than stems.  相似文献   

16.
Soil texture greatly influences soil water movement, thus may affect the water balance and vegetation growth in the desert–Loess Plateau transition zone. This study is to determine if the water balance differs in homogeneous and layered soils with Caragana korshinkii stands in semiarid region. Soil water measurements up to 500-cm depth were taken in 2006 and 2007 on homogeneous sandy soil, homogeneous silt loam soil, and layered soil with sand overlying silt loam. HYDRUS-1D was used to simulate the soil water balance. The results indicated the annual water balance components were greatly affected by soil layering. The ratio of average actual evapotranspiration (ETa) to precipitation (P) during the two years in the layered soil was slightly lower than that in homogeneous soils. The ratios of annual actual transpiration (Tr) to evapotranspiration were 50.9%, 41.2% and 30.6% in layered soil, homogeneous sandy soil, and homogeneous silt loam soil, respectively. C. korshinkii grown in layered soil had deeper soil water recharge and higher Tr/ETa ratio, thus had more available water for transpiration than that in homogeneous soils. This study suggested the layered soil with sand overlying silt loam is more favorable to C. korshinkii growth in terms of water use than homogeneous soils in the desert–Loess Plateau transition zone.  相似文献   

17.
Abstract

Different soil and water conservation (SWC) practices have been implemented in many drought-prone parts of Ethiopia since the 1980s. We assessed the effect of SWC practices on runoff response and experimentally derived and tested the validity of the runoff curve number (CN) model parameter for the tropical humid highland climate of the Kasiry watershed in northwestern Ethiopia. We recorded daily rainfall and runoff depth from 18 runoff plots (30 m long × 6 m wide) representing the five main land-use types with various SWC practices and two slope classes (gentle and steep). CN values were derived using the lognormal geometric mean CN procedure. Runoff was significantly less from plots with SWC measures, with average reductions of 44 and 65% observed in cultivated and non-agricultural lands, respectively. Runoff on plots representing non-agricultural land was relatively accurately predicted with the derived CN method, but predictions were less accurate for plots treated with a SWC practice. We conclude that predicting the effect of SWC practices on runoff requires parameterization with separate sets of CN value for each SWC practice.  相似文献   

18.
华北平原典型农田水、热与CO2通量的测定   总被引:42,自引:1,他引:42  
在中国科学院栾城农业生态试验站用波文比-能量平衡法与涡度相关技术对净辐射通量(Rn),潜热通量(λE),感热通量(H),土壤热通量(G)与冠层CO2通量(Fco2)进行了长期定位研究,结果显示Rn大部分用于作物潜热的消耗,连续2年4个生长季λE/Rn都在70%以上,在作物生育盛期,夏玉米λE/Rn略高于冬小麦,H/Rn都在15%左右,G/Rn在5%-13%之间,且冬小麦G/Rn明显高于夏玉米。蒸发比值(EF)在不同的理想环境条件下,随着可供能量(Rn-G)的增加表现出先迅速下降,后缓慢下降,最后趋于稳定的趋势,并在冬小麦环境条件下得到了验证,直角双曲线模型可以模拟Fco2随光通量密度(PPFD)的响应过程。晴天冠层水分利用效率(WUE)不是在正午出现最高值,当PPFD达到1500μmolm^-2s^-1左右时,WUE却略有下降。  相似文献   

19.
Shrub-induced spatial and temporal heterogeneity of soil properties is common in arid and semiarid ecosystems, and it facilitates the development of plant species diversity. We selected 5-, 10-, 20-, 30-, and 40-year-old Caragana microphylla shrubs in the Shanxi Loess Plateau to evaluate the spatial and temporal heterogeneity of soil properties under and outside the shrub canopy. In addition, the presence of adventitious plant species was investigated to assess the development of herbaceous species diversity. Soil samples were collected from two depths (0-5 cm and 5-10 cm). The establishment and development of shrubs promoted temporal variation, improved soil texture, enhanced soil organic matter (SOM), total nitrogen (TN), and cation exchange capacity (CEC), and decreased pH, bulk density (BD), and soil water content (SWC). The results further confirmed that SOM, TN, and CEC were significantly higher at the center than at the outside of the shrub canopies (P < 0.05) and were higher at the 0-5 cm depth than at the 5-10 cm depth. Moreover, the differences in SOM, TN, and CEC from the center to the outside of shrub canopies were greater under 30- and 40-year-old shrubs than under 10- and 5-year-old shrubs. Furthermore, the spatiotemporal heterogeneity of the soil properties facilitated the development of herbaceous species diversity.  相似文献   

20.
Changes in soil organic carbon (SOC) in rangelands has been extensively investigated. Grazing in outlying rangeland areas has caused severe impacts on ecosystem functions. To reveal the effects of grazing on SOC, we evaluated the grassland in Xilin Gol League, Inner Mongolia, China. Grazing intensity was determined by using two image sets of vegetation index with normalized differences in grazing periods (July 12th and 28th). The range of variation in vegetation index was then used to measure the grazing intensity. The SOC storage and density were obtained by conducting experiments on field soil samples. Results showed that 1) the grazing intensity in Xilin Gol League declined gradually from west to east; by contrast, the spatial distribution of SOC density increased gradually. 2) As grazing intensity increased, the carbon storage of rangeland decreased evidently. Minimum carbon storage was observed in grasslands classified under extreme overgrazing; by comparison, maximum values were found in areas classified under light overgrazing to moderate grazing. 3) The estimated soil carbon storage was 8.48 × 1011 kg, and the average carbon density was 4.08 kg/m2. Our research demonstrated that grazing intensity likely affects soil carbon. Moderate grazing is an optimum strategy to maintain carbon storage and ensure sustainable grassland utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号