首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.  相似文献   

2.
许浩  程亮  伍阳 《测绘通报》2020,(6):104-110
面向数字城市和智慧城市建设急需城市建筑三维模型支撑的需要,本文基于机载LiDAR数据,以“顾及平整性的屋顶面片分割—屋顶层间连接—三维模型重建”为脉络,提出了一种采用层间连接和平滑策略的建筑屋顶三维模型重建方法。在屋顶面片提取过程中,充分顾及了屋顶面片的平整性;并在屋顶面片平整基础上,提出层间连接点的概念,以实现高效、快速的模型重建工作。试验部分,本文从屋顶面片重建完整率与正确率、重建几何精度及建筑物高程对于重建的影响3个方面作了较为详尽的评价与分析,并在国际摄影测量与遥感学会标准数据集支撑下,与国际同行进行试验对比。试验结果表明,建筑屋顶重建的完整率和正确率分别达到90%和95%;在偏移距离评价方面,平均偏移距离和标准差最优分别达0.05 m和0.18 m。因此,本文方法可有效完成建筑屋顶三维模型重建,重建模型准确度高、完整性好。  相似文献   

3.
李鹏程  邢帅  徐青  周杨  刘志青  张艳  耿迅 《遥感学报》2014,18(6):1237-1246
利用机载LiDAR点云数据进行建筑物重建是当今摄影测量与遥感领域的一个热点问题,特别是复杂形状建筑物模型的精确自动构建一直是一个难题。本文提出一种基于关键点检测的复杂建筑物模型自动重建方法,采用RANSAC法与距离法相结合的分割方法自动提取建筑物屋顶各个平面的点云,并利用Alpha Shape算法提取出各个平面的精确轮廓,根据屋顶平面之间的空间拓扑关系分析建筑物的公共交线特征,在此特征约束下对提取的初始关键点进行修正,最终重建出精确的建筑物3维模型。选取不同类型复杂建筑物与包含复杂建筑物的城市区域点云进行实验,结果表明该算法具有较强实用价值。  相似文献   

4.
Semantic information in 3D building models is of vital importance for various applications in terms of smart cities. To infer the semantic information and localize the components on building facades, this article proposes a novel approach to model facades with semantics by constructing hierarchical topological graphs. This method utilizes the topological characteristics of building facades. In the first‐layer layout graph, the algorithm takes the nearest cluster as the vertex and the distance between components as the edge. Thus, a topology graph is generated for the facade. The proposed algorithm is divided into three steps. First, the topology graph is obtained by calculating the spacing between the components. It is reasonable to calculate the topological graph by encoding the topological edges. If this calculation is not effective, the topology is justified by adjusting the spacing between components. Finally, the vertices in the graph are used to repair the occluded parts of the facade. In the second‐layer graph, a grid is constructed according to the first‐layer graph. Then, the attributes of the nodes are used to reconstruct the facade. The experimental results show that this method has a high accuracy of 90% and that the average time consumption is 6 s.  相似文献   

5.
Currently, very few roof shape information for complex buildings is available on OSM. Moreover, additional data requirements (e.g. 3D point clouds) limit the applicability of many roof reconstruction approaches. To mitigate this issue, we propose an approach to roof shape recommendations for complex buildings by exploring the inherited characteristics of building footprints: the disclosure of rectangles combinations in a partition of footprints and the symmetrical features of footprints. First, it decomposes a complex footprint into rectangles by using an advanced minimal non-overlapping cover algorithm. Second, a graph-based symmetry detection algorithm is proposed to identify all the symmetrical sub-clusters in partitions. Then, a set of selection rules are defined to rank partitions, and the best ones are chosen for roof shape recommendation. Finally, a set of combination rules and a symmetry rule are defined. It enables to evaluate the probability of a footprint being a certain combination of roof shapes. Experimental results show the growth of the probability of correctly recommending roof shapes for single rectangles and buildings from a prior probability of 17–45% and from a prior probability of 0.29–14.3%, removing 60% and 93% of the incorrect roof shape options, respectively.  相似文献   

6.
LiDAR数据与航空影像结合的建筑物重建   总被引:5,自引:0,他引:5  
探讨了结合航空影像的LiDAR数据简单建筑物重建算法,以建筑物边界、屋顶面片的自动提取及面片邻域关系的建立,重建了简单直角建筑物模型,并利用航空影像进行了精确定位。  相似文献   

7.
翟京生  肖永茂 《测绘学报》1996,25(4):272-276
本文利用图论的原理和算法,根据等深线间所具有的相邻和包含关系,提出了加权邻接矩阵的生成方法,同时通过特征树和关系图的搜索推理,实现了等深线树的生成和深度值的自动识别。  相似文献   

8.
基于多源数据的拼接型房屋三维重建方法研究   总被引:2,自引:0,他引:2  
提出了结合房屋矢量数据、航空影像和点云数据的拼接型房屋(由平顶房、人字型和四坡型房屋组成)自动三维重建算法。算法重点研究了基于点云数据和影像特征提取的拼接型房屋屋脊线检测,并利用其对拼接型房屋组成的模型进行拆分;对于人字型和四坡型房屋组成模型,结合矢量数据和屋脊线,利用几何约束条件自动寻找房屋组成模型的屋檐线,从而获得拼接型房屋组成模型的完整分割;最后通过点云数据的屋顶平面解算其组成房屋模型的参数,最终实现整个拼接型房屋的三维重建。实验数据证明,该方法能较好地实现拼接型房屋的几何模型自动重建。  相似文献   

9.
房顶是三维建筑的重要组成部分,房顶结构的识别是三维建筑综合算法实现和进行城市建筑空间分布模式分析的基础。分析了建筑房顶结构特点,提出了一种三维建筑分类的实用方法,针对不同房顶类型设计了相应的结构化表达方法,在此基础上提出了三维建筑房顶面信息提取算法,并进一步实现了房顶类型的识别。实验证明,该方法识别的准确性较高,能够满足进一步应用的需求。  相似文献   

10.
Urban buildings are an integral component of urban space, and accurately identifying their spatial configurations and grouping them is vital for various urban applications. However, most existing building clustering methods only utilize the original spatial and nonspatial features of buildings, disregarding the potential value of complementary information from multiple perspectives. This limitation hinders their effectiveness in scenarios with intricate spatial configurations. To address this, this article proposes a novel multi-view building clustering method that captures cross-view information from spatial and nonspatial features. Drawing inspiration from both spatial proximity characteristics and nonspatial attributes, three views are established, including two spatial distance graphs (centroid distance graph and the nearest outlier distance graph) and a building attribute graph (multiple-attribute graph). The three graphs undergo iterative cross-diffusion processes to amplify similarities within each predefined graph view, culminating in their fusion into a unified graph. This fusion facilitates the comprehensive correlation and mutual enhancement of spatial and nonspatial information. Experiments were conducted using 10 real-world community-building datasets from Wuhan and Chengdu, China. The results demonstrate that our approach achieves 21.27% higher accuracy and 22.28% higher adjusted rand index in recognizing diverse complex arrangements compared to existing methods. These findings highlight the importance of leveraging complementary and consensus information across different feature dimensions for improving the performance of building clustering.  相似文献   

11.
This paper presents a generative statistical approach to automatic 3D building roof reconstruction from airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflection from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to ensure plausible results. In this work we propose an automatic process with emphasis on top-down approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number of buildings to reduce the computational complexity for large urban scenes. For the building extraction and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-up efforts or additional data like building footprints are no more required. Based on a predefined primitive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters, is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experiments are performed on data-sets of different building types (from simple houses, high-rise buildings to combined building groups) and resolutions. The results show robustness despite the data artefacts mentioned above and plausibility in reconstruction.  相似文献   

12.
Building extraction is still a difficult issue in the field of remote sensing. In order to extract the buildings with similar structures efficiently, an algorithm based on multi-subgraph matching is proposed using only the panchromatic high-resolution remotely sensed imagery (RSI). Firstly, scale-invariant feature transform feature is detected within both RSI and building template, and the corresponding graphs are constructed. Then, binary matching rules are defined to reconstruct the graphs to reduce the complexity. At last, according to the homogeneity of the building top, disconnected subgraphs are isolated from the reconstructed graphs. To improve the algorithm accuracy, the matched subgraphs are optimized on the basis of the differences in the structure and size. For verifying the validity of the proposed method, nine representatives are chosen from GF-2 images covering Guangzhou, China. Experimental results show that the precision and recall of the proposed method are 97.73% and 87.16%, respectively, and its overall performance F1 is higher than the three other similar methods.  相似文献   

13.
以机载LiDAR点云数据为研究对象,提出一种新的基于点云数据的多层建筑物三维轮廓模型高精度自动重建方法。在已完成建筑物结构提取及轮廓规则化处理的基础上,利用多层屋顶轮廓在水平投影面内的相邻关系,将各层屋顶中同等级屋顶的相邻关系概括为平行边、不平行且不相交、相交3种相邻形式,结合多层屋顶的层级结构信息对相邻轮廓边界进行一致性处理。实验证明本文方法可以进一步消除多层建筑物各屋顶轮廓的规则化处理误差,使相邻轮廓边界在水平投影面内严格重合,同时重建后建筑物三维轮廓模型的正确性与完整性较高,拐点的定位精度优于激光点平均间距。  相似文献   

14.
Indoor 3D models are digital representations of building interiors reconstructed from scanned data acquired by laser scanners, digital depth (RGBD) cameras, and CAD drawings. Consequently, there is noise in the source data and a notable variety in the methods used to treat the noise and to process these data into reconstructed models. Alas, the correctness of these reconstructions and thus their suitability for a given application are uncertain. There is a lack of a robust base logic that would allow for controlling the consistency of these (automatically) generated models. Fortunately, correctness criteria are well‐defined through existing international standards. Hence, we propose a conceptual framework based on formal grammars to check the semantic, geometric, and topological consistency of a reconstructed 3D model. The proposed method proceeds in three steps to validate the model: (1) correctness checking of individual components; (2) consistency verification of instances’ interactions; and (3) model consistency check for targeted applications. Our method identifies the components in the model that violate the given rules derived from the current standards and expert knowledge. Ultimately, we propose a quantified formulation of our method that may be straightforwardly integrated into industrial‐level model checkers. The approach is independent of level of details and reconstruction method.  相似文献   

15.
This paper presents a novel approach to building roof modeling, including roof plane segmentation and roof model reconstruction, from airborne laser scanning data. Segmentation is performed by minimizing an energy function formulated as multiphase level set. The energy function is minimized when each segment corresponds to one or several roof plans of the same normal vector. With this formulation, maximum n regions are segmented at a time by applying log2n level set functions. The roof ridges or step edges are then delineated by the union of the zero level contours of the level set functions. In the final step of segmentation, coplanar and parallel roof segments are separated into individual roof segments based on their connectivity and homogeneity. To reconstruct a 3D roof model, roof structure points are determined by intersecting adjacent roof segments or line segments of building boundary and then connected based on their topological relations inferred from the segmentation result. As a global solution to the segmentation problem, the proposed approach determines multiple roof segments at the same time, which leads to topological consistency among the segment boundaries. The paper describes the principle and solution of the multiphase level set approach and demonstrates its performance and properties with two airborne laser scanning data sets.  相似文献   

16.
建筑物屋顶面点云分割结果的好坏对建筑物三维模型重建起着重要的作用。针对传统RANSAC算法建筑物屋顶面点云的分割问题,提出了一种基于局部约束的建筑物点云平面分割方法。利用点云局部曲面法向约束构建法向准则,利用半径约束的点云空间聚类的方法对共面屋顶面点云进行分解,从而抑制"伪屋顶面"的产生;利用局部抽样策略降低算法的迭代次数,减少运算量。实验表明该方法能够获得稳定可靠的建筑物屋顶点云分割结果,将有利于后续的建筑物三维模型重建。  相似文献   

17.
赵传  张保明  陈小卫  郭海涛  卢俊 《测绘学报》2017,46(9):1123-1134
从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。  相似文献   

18.
针对现有算法从LiDAR点云中提取复杂建筑物屋顶面不完整、阈值难以设置的问题,提出一种结合点云空间分布的法向量密度聚类提取屋顶面点云方法。通过构建Delaunay三角网,计算建筑物LiDAR点云的法向量;在分析建筑物点云空间和法向量分布特点的基础上,定义一种邻域关系度量屋顶面点云之间的相似性,并利用提出的算法聚类建筑物点云,得到屋顶面片点云粗提取结果;通过构建屋顶面片缓冲区,经面片处理得到建筑物各屋顶面的完整点云。选取不同复杂程度的建筑物进行实验,结果表明,算法能有效提取复杂建筑物屋顶面点云,具有较好的适应性,并能为建筑物三维重建提供可靠的屋顶面信息。  相似文献   

19.
动态空间正图像透视投影正反解   总被引:4,自引:0,他引:4  
卫星图像都是在动态情形下获取的。瞬间曝光获取的图像投影性质符合透视投影。本文针对卫星动态获取的正图像,建立其平面透视投影,利用矢量解法研究其正反解变换和星下点坐标计算方法,最后给出了算例。  相似文献   

20.
顾及外拓扑的异构建筑三维拓扑重建   总被引:2,自引:1,他引:1  
分析了异构建筑在三维拓扑重建中的问题,依据拓扑数据模型的需求,提出了基于顶图、底图和结构图的自动拓扑重建算法,该算法能够有效地对异构建筑进行整体三维拓扑重建,不仅保留了建筑内每一实体单元的内拓扑,同时也兼顾了实体间的外拓扑。基于该方法,设计并开发了三维地籍管理系统中的数据生成模块,以深圳市某小区为实验区,验证了算法的可行性及有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号