首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We assess the occurrence and probability of extreme heat over Australia in association with the Southern Annular Mode (SAM), persistent anticyclones over the Tasman Sea, and the Madden–Julian Oscillation (MJO), which have previously been shown to be key drivers of intra-seasonal variations of Australian climate. In this study, extreme heat events are defined as occurring when weekly-mean maximum temperature anomalies exceed the 90th percentile. The observed probability of exceedance is reduced during the positive phase of the SAM and enhanced during the negative phase of the SAM over most of Australia. Persistent anticyclones over the Tasman Sea are described in terms of (1) split-flow blocking at 160°E and (2) high pressure systems located in the vicinity of the subtropical ridge (STRHs), about 10° north of the split-flow blocking region, for which we devise a simple index. Split-flow blocks and STRHs have contrasting impacts on the occurrence of extreme heat over Australia, with STRHs showing enhanced probability of upper decile heat events over southern Australia in all seasons. The observed probability of an upper decile heat event varies according to MJO phase and time of year, with the greatest impact of the MJO on extreme heat occurring over southern Australia (including the Mallee agricultural region) in spring during phases 2–3. We show that this modulation of the probability of extreme heat by the SAM, persistent anticyclones over the Tasman Sea, and the MJO is well simulated in the Bureau of Meteorology dynamical intra-seasonal/seasonal forecast model POAMA-2 at lead times of 2–3 weeks. We further show that predictability of heat extremes increases in association with the negative SAM phase, STRH and MJO, thus providing a basis for skilful intra-seasonal prediction of heat extremes.  相似文献   

2.
南极海冰涛动与ENSO的关系   总被引:10,自引:3,他引:10       下载免费PDF全文
对近30年南极海冰密集度资料的EOF和SVD分析,发现南极地区在罗斯海外围和别林斯高晋海的海冰密集度场存在着“翘翘板”的变化特征,并与ENSO有密切联系。由此定义两个海冰关键区的差值为南极海冰涛动指数(ASOI),ASOI超前SOI和Nino3指数2个月时,其正、负相关系数达到最大,并通过α=0.001的信度检验。ASOI高、低指数阶段对应的南半球海平面气温、气压场和风场的合成分析表明,海冰关键区的异常变化可能引起温度、气压、风场的响应而影响南太平洋的洋流,进而对ENSO的发生、发展产生影响。  相似文献   

3.
In 2010 eastern Australia received its highest springtime (September–November) rainfall since 1900. Based on historical relationships with sea surface temperatures (SST) and other climate indices, this record rainfall in 2010 was shown to be largely commensurate with the occurrence of a very strong La Niña event and an extreme positive excursion of the SAM. The pattern and magnitude of the tropical SST anomalies in austral spring 2010 were diagnosed to be nearly perfect to produce high rainfall across eastern Australia. Key aspects of this SST pattern were the strong cold anomaly in the central equatorial Pacific, and the strong warm anomalies in the eastern Indian Ocean and the far western Pacific to the north of Australia. Although the recent upward trend in SSTs in the western Pacific/eastern Indian Ocean warm pool accounted for about 50 % of the SST anomaly surrounding northern Australia in 2010, the contribution by the warming trend in these SSTs to the Australian rainfall anomaly in 2010 was assessed to be relatively modest. The strong positive swing in SAM was estimated to have accounted for upwards of 40 % of the regional anomaly along the central east coastal region and about 10 % of the area mean anomaly across eastern Australia. This contribution by the SAM suggests that a significant portion of the rainfall in 2010 may not have been seasonally predictable. However, predictability arising from the promotion of high SAM by the extreme La Nina event can not be ruled out.  相似文献   

4.
We analyze changes in the relationship between extreme temperature events and the large scale atmospheric circulation before and after the 1976 climate shift. To do so we first constructed a set of two temperature indices that describe the occurrence of warm nights (TN90) and cold nights (TN10) based on a long daily observed minimum temperature database that spans the period 1946?C2005, and then divided the period into two subperiods of 30?years each (1946?C1975 and 1976?C2005). We focus on summer (TN10) and winter (TN90) seasons. During austral summer before 1976 the interannual variability of cold nights was characterized by a negative phase of the Southern Annular Mode (SAM) with a cyclonic anomaly centered off Uruguay that favoured the entrance of cold air from the south. After 1976 cold nights are associated not with the SAM, but with an isolated vortex at upper levels over South Eastern South America. During austral winter before 1976, the El Ni?o phenomenon dominated the interannual variability of warm nights through an increase in the northerly warm flow into Uruguay. However, after 1976 the El Ni?o connection weakened and the variability of warm nights is dominated by a barotropic anticyclonic anomaly located in the South Atlantic and a low pressure center over South America. This configuration also strengthens the northward flow of warm air into Uruguay. Our results suggest that changes in El Ni?o evolution after 1976 may have played a role in altering the relationship between temperature extreme events in Uruguay and the atmospheric circulation.  相似文献   

5.
Occurrence of drought and dry periods in southeastern Australia has been linked to broad scale climate phenomena including the Southern Oscillation, Interdecadal Pacific Oscillation (IPO), Indian Ocean Dipole (IOD), Southern Annular Mode (SAM) and persistence of blocking high pressure in the Tasman Sea. We examine relationships between Athrotaxis tree ring chronologies from southern Australia extending over much of the past millennia and these broad scale indices. We also examine relationships between the chronologies, temperature, precipitation and a standardised precipitation and evapotranspiration index. Timing of significant correlations with maximum temperature varies between species. The responses of the species with broadscale indices vary with location: northern Athrotaxis cupressoides (Pencil Pine) are more strongly related to the Interdecadal Pacific Oscillation (IPO) and Southern Oscillation Index (SOI) than southern sites. As an exception to this, a site in the far south had significant correlations with both the SOI and IPO, opposite in sign to those observed for the northern sites. Significant spectral power at frequencies consistent with the SOI and IPO occur in all chronologies. Western and southern sites are more strongly related to a seasonalised index of SAM. These three systems have played important roles in determining moisture conditions in southeastern Australia over the past millennium. Results suggest that reconstructions of the SOI, IPO or SAM are unlikely based solely on this Athrotaxis network. The Athrotaxis network of tree ring sites, is however, likely to be an important input to multi-proxy models reconstructing the SOI, IPO or SAM in the Australian sector. The Athrotaxis network of sites is also an important extension of the existing network of Australian tree ring sites that could be used to reconstruct historical drought in southeastern Australia.  相似文献   

6.
We analyze historical simulations of variability in temperature and rainfall extremes in the twentieth century, as derived from various global models run informing the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4). On the basis of three indices of climate extremes, we compare observed and modeled trends in time and space, including the direction and significance of the changes at the scale of South America south of 10° S. The climate extremes described warm nights, heavy rainfall amounts and dry spells. The reliability of the GCM simulations is suggested by similarity between observations and simulations in the case of warm nights and extreme rainfall in some regions. For any specific extreme temperature index, minor differences appear in the spatial distribution of the changes across models in some regions, while substantial differences appear in regions in the interior of tropical and subtropical South America. The differences are in the relative magnitude of the trends. Consensus and significance are less strong when regional patterns are considered, with the exception of the La Plata Basin, where observed and simulated trends in warm nights and extreme rainfall are evident.  相似文献   

7.
There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO.The Southern Hemisphere Annular Mode(SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics.This study shows that the austral summer(December–January–February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn(March–April–May;MAM).The mechanisms associated with this SAM–ENSO relationship can be briefly summarized as follows:The SAM is positively(negatively) correlated with SST in the Southern Hemisphere middle(high) latitudes.This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole(SOD).The DJF SOD,caused by the DJF SAM,could persist until MAM and then influence atmospheric circulation,including trade winds,over the Nio3.4 area.Anomalous trade winds and SST anomalies over the Nio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback,which eventually results in a cooling(warming) over the Nio3.4 area followed by the positive(negative) DJF SAM.  相似文献   

8.
Recent studies demonstrate that the Antarctic Ozone Hole has important influences on Antarctic sea ice.While most of these works have focused on effects associated with atmospheric and oceanic dynamic processes caused by stratospheric ozone changes,here we show that stratospheric ozone-induced cloud radiative effects also play important roles in causing changes in Antarctic sea ice.Our simulations demonstrate that the recovery of the Antarctic Ozone Hole causes decreases in clouds over Southern Hemisphere(SH)high latitudes and increases in clouds over the SH extratropics.The decrease in clouds leads to a reduction in downward infrared radiation,especially in austral autumn.This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice.Surface cooling also involves ice-albedo feedback.Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice.  相似文献   

9.
The mechanism of the South Pacific Ocean Dipole (SPOD) mode is examined, using a 50-year simulation of the Climate Forecast System, version 2 (CFSv2) and 50-year observation-based ocean–atmosphere analyses (1961–2010). It is shown that the SPOD, a sea surface temperatures (SST) seesaw between the subtropics and extratropics, is the dominant mode of the interannual variability in the South Pacific in both observations and CFSv2 simulation. CFSv2 also reproduces the seasonal phase-locking of the observed SPOD, with the anomaly pattern developing in austral spring, peaking in summer, and decaying in autumn. Composite analyses based on both observational and model data suggest that in the warm phase of SPOD, positive SST anomaly (SSTA) is initiated by weakened westerly winds over the central South Pacific in austral spring, which suppress the surface evaporative heat loss and reduce the oceanic mixed layer depth, both contributing to the SST warming. The wind-SST-mixed layer anomalies then evolve coherently over the next two seasons while the cold SSTA develops to the north. The wind perturbations are in turn a response to El Niño-Southern Oscillation (ENSO), which forces an atmospheric planetary wave train, the Pacific-South American pattern, emanating from an anomalous heat source in the tropical western Pacific. Moreover, SPOD is significantly correlated with the southern annular mode (SAM) while the latter is also significantly correlated with the ENSO index. This suggests that ENSO’s influence on the SPOD may be partially conveyed through SAM.  相似文献   

10.
利用1961—2013年新疆89站逐日气温和NCEP再分析高度场资料,分析了不同气候背景下新疆1961年以来冬季(12月—翌年2月)出现的极端冷(暖)事件年代际变化及与其相联系的环流特征。根据对新疆冬季极端冷(暖)事件的气候背景划分,认为新疆冬季极端冷(暖)事件在不同气候背景中都有明显的不同,全疆冬季极端冷事件存在随气候背景转变而发生区域一致变化的特征,但冬季极端暖事件的变化则有南北反相的区域差异。总体而言,新疆极端冷暖事件发生的日数趋于减少,极端冷暖事件强度也具有显著减小的趋势;北疆西部和天山两侧是气候极端性变化最显著的区域。从冷暖期环流特征的差异来看,北疆型极端冷事件减少的主要原因来自于突变后极涡减弱,而南疆型极端冷(暖)事件减少(增加)则主要受欧亚范围内大片正变高区的影响。  相似文献   

11.
利用1979—2016年ERA-Interim有效波高(SWH)和海表风场数据,分析了南海-北印度洋极端海浪场分布和变化.结果表明:南海-北印度洋极端SWH分布和极端风速分布形态以及年际变化趋势高度一致,说明了涌浪为主的北印度洋和风浪为主的南海一样,极端SWH都由局地的极端风速控制;强极端SWH主要分布在阿拉伯海以及南海北部,阿拉伯海北部增长与该区域气旋强度增强有着密切关系,而南海的极端SWH主要受东北季风控制;东非沿岸极端SWH线性增长趋势则与索马里急流的年代际尺度上有逐渐增强的线性趋势有关.北印度洋及南海海域极端SWH距平场的EOF分析结果表明,南海极端SWH与北印度洋表现出反相变化的特征.北印度洋(南海海域)极端SWH多出现在西南季风(东北季风)期间,因为在西南季风(东北季风)期间,极端风速也相对增强.  相似文献   

12.
The 1907–2001 summer-to-summer surface air temperature variability in the eastern part of southern South America (SSA, partly including Patagonia) is analysed. Based on records from instruments located next to the Atlantic Ocean (36°S–55°S), we define indices for the interannual and interdecadal timescales. The main interdecadal mode reflects the late-1970s cold-to-warm climate shift in the region and a warm-to-cold transition during early 1930s. Although it has been in phase with the Pacific Decadal Oscillation (PDO) index since the 1960s, they diverged in the preceding decades. The main interannual variability index exhibits high spectral power at ~3.4 years and is representative of temperature variability in a broad area in the southern half of the continent. Eleven-years running correlation coefficients between this index and December-to-February (DJF) Niño3.4 show significant decadal fluctuations, out-of-phase with the running correlation with a DJF index of the Southern Annular Mode. The main interannual variability index is associated with a barotropic wavetrain-like pattern extending over the South Pacific from Oceania to SSA. During warm (cold) summers in SSA, significant anticyclonic (cyclonic) anomalies tend to predominate over eastern Australia, to the north of the Ross Sea, and to the east of SSA, whereas anomalous cyclonic (anticyclonic) circulation is observed over New Zealand and west of SSA. This teleconnection links warm (cold) SSA anomalies with dry (wet) summers in eastern Australia. The covariability seems to be influenced by the characteristics of tropical forcing; indeed, a disruption has been observed since late 1970s, presumably due to the PDO warm phase.  相似文献   

13.
Anticipating and mitigating wave-related hazards rely heavily on understanding wave variability drivers. Here, we describe wave conditions related to concurrent Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO) phases during the austral summer. To identify such conditions, significant wave height (Hs) and peak wave period (Tp) daily anomalies were composited during different SAM–ENSO phase combinations over the last four decades (1979–2018). Surface wind anomalies were also composited to assist in the interpretation of wave conditions. The composites show significant wave variability across all ocean basins and in several semi-enclosed seas throughout the different SAM–ENSO phase combinations. The Southern, Indian, and Pacific Oceans generally experience the strongest Tp anomalies during combinations of SAM phases with El Niño, and the weakest Tp anomalies during combinations of SAM phases with La Niña. The anomalously large waves observed in the south-western Pacific, Tasman Sea, and the Southern Ocean, previously ascribed to ENSO conditions, seem to be instead associated with the SAM variability. SAM-related atmospheric conditions are found to be able to modulate the intensity of ENSO-related winds over the South China Sea, which, in turn, alter the magnitude of waves in that region. These and other wave anomaly structures described here, especially those contrasting the behaviour expected for a given ENSO phase, such as the one found along the California coast, stress the importance of understanding relationships between wave parameters and climate patterns interactions.  相似文献   

14.
Based on the simulated ice thickness data from 1949 to 1999, monthly mean temperature data from 160 stations, and monthly mean 1°×1° precipitation data reconstructed from 749 stations in China from 1951 to 2000, the relationship between the Arctic sea ice thickness distribution and the climate of China is analyzed by using the singular value decomposition method. Climate patterns of temperature and precipitation are obtained through the rotated empirical orthogonal function analysis. The results are as follows. (1) Sea ice in Arctic Ocean has a decreasing trend as a whole, and varies with two major periods of 12-14 and 16-20 yr, respectively. (2) When sea ice is thicker in central Arctic Ocean and Beaufort-Chukchi Seas, thinner in Barents-Kara Seas and Baffin Bay-Labrador Sea, precipitation is less in southern China, Tibetan Plateau, and the north part of northeastern China than normal, and vice versa. (3) When sea ice is thinner in the whole Arctic seas, precipitation is less over the middle and lower reaches of Yellow River and north part of northeastern China, more in Tibetan Plateau and south part of northeastern China than normal, and the reverse is also true. (4) When sea ice is thinner in central Arctic Ocean, East Siberian Sea, Beaufort-Chukchi Seas, and Greenland Sea; and thicker in Baffin Bay-Labrador Sea, air temperature is higher in northeastern China, southern Tibetan Plateau, and Hainan Island than normal. (5) When sea ice is thicker in East Siberian Sea 5 months earlier, thinner in Baffin Bay-Labrador Sea 7-15 months earlier, air temperature is lower over the north of Tibetan Plateau and higher in the north part of northwestern China than normal, and a reverse correlation also exists.  相似文献   

15.
Based on the simulated ice thickness data from 1949 to 1999,monthly mean temperature data from 160 stations,and monthly mean 1 × 1 precipitation data reconstructed from 749 stations in China from 1951 to 2000,the relationship between the Arctic sea ice thickness distribution and the climate of China is analyzed by using the singular value decomposition method.Climate patterns of temperature and precipitation are obtained through the rotated empirical orthogonal function analysis.The results are as follows.(1) Sea ice in Arctic Ocean has a decreasing trend as a whole,and varies with two major periods of 12-14 and 16-20 yr,respectively.(2) When sea ice is thicker in central Arctic Ocean and Beaufort-Chukchi Seas,thinner in Barents-Kara Seas and Baffin Bay-Labrador Sea,precipitation is less in southern China,Tibetan Plateau,and the north part of northeastern China than normal,and vice versa.(3) When sea ice is thinner in the whole Arctic seas,precipitation is less over the middle and lower reaches of Yellow River and north part of northeastern China,more in Tibetan Plateau and south part of northeastern China than normal,and the reverse is also true.(4) When sea ice is thinner in central Arctic Ocean,East Siberian Sea,Beaufort-Chukchi Seas,and Greenland Sea;and thicker in Baffin Bay-Labrador Sea,air temperature is higher in northeastern China,southern Tibetan Plateau,and Hainan Island than normal.(5) When sea ice is thicker in East Siberian Sea 5 months earlier,thinner in Baffin Bay-Labrador Sea 7-15 months earlier,air temperature is lower over the north of Tibetan Plateau and higher in the north part of northwestern China than normal,and a reverse correlation also exists.  相似文献   

16.
利用1981—2016年7—10月中国753站逐日降水资料、气象信息综合分析处理系统(MICAPS)逐日站点降水资料、日本东京台风中心西北太平洋热带气旋(TC)最佳路径资料和NCEP/NCAR再分析资料集,分析了华南地区区域性日降水极端事件(RDPE事件)的统计特征及环流异常。根据华南地区RDPE事件的发生是否受热带气旋影响将其分为TCfree-RDPE和TCaff-RDPE两类事件,其中TCaff-RDPE事件占42%且集中发生在8月4—5候;TCfree-RDPE事件以7月发生频数最多,占其总频次的1/2以上。TCfree-RDPE事件发生时,华南地区受异常气旋性环流控制,来自西太平洋和中国南海的暖湿气流与北方冷气团在此汇合并形成一条狭长的水汽辐合带,低层辐合、高层辐散,显著强烈的上升运动为TCfree-RDPE事件的发生与维持提供了有利条件;与此同时,波扰动能量由高原东北侧及河西走廊地区向华南一带传播并在华南显著辐合,有利于华南上空扰动的发展和维持。TCaff-RDPE事件发生时,华南上空由低层到高层的斜压环流结构更为明显,异常上升运动更加强烈,热带气旋在其运动过程中携带了大量源自孟加拉湾、中国南海和西太平洋地区的水汽并输送至华南地区,水汽辐合气流更为强盛。同时,波扰动能量由高纬度地区沿河西走廊向下游传播,但在华南地区辐合不甚明显。两类极端事件发生时,加热场上的差异亦明显。华南及邻近地区上空的大气净加热及其南侧大范围区域的净冷却所形成的加热场梯度对TCfree-RDPE事件的发生有利。而TCaff-RDPE事件发生时,〈Q1〉和〈Q2〉在经向上由18°N以南、华南及其邻近地区、32°N以北呈负—正—负的异常分布型,正距平值更高,加热场梯度更大,有利于TCaff-RDPE事件的维持。这些结果有利于人们认识和预测华南区域性日降水极端事件的发生。   相似文献   

17.
南极地区气候系统变化: 过去、现在和将来   总被引:2,自引:0,他引:2  
 南极科学委员会(SCAR)下属的"南极与全球气候系统(AGCS)计划"专家委员会发布了"南极与南大洋气候系统(SASOCS)"白皮书,重点评估了过去50 a南极地区气候系统的变化并预估了未来100 a情景。白皮书总体认为,过去50 a南极气候系统变化表现出很强的区域特征。南极半岛地区升温明显,半岛及亚南极岛屿上的冰川均处于退缩状态;南半球环状模(SAM)转为正位相,西南极上空的暖湿气团入侵加强,南极冬季对流层有升温趋势,平流层变冷,极涡消退日期推迟;东南极外围的南极底层水变淡,Weddell海区的底层水有变暖趋势。虽有上述区域变化,整个南极地区在过去50 a中近地面气温并无明显升高,降水亦无明显增加。自20世纪80年代以来海冰面积也无明显变化,只在某些扇区变化强烈。模式预估结果为:到21世纪末南极内陆地区将增暖(3.4±1.0)℃, 海冰面积将缩小约30%。现有的冰盖模式尚不足以回答未来气候变暖情景下冰盖融化与海平面变化之间的定量关系,有待更深入研究。  相似文献   

18.
南极科学委员会(SCAR)下属的"南极与全球气候系统(AGCS)计划"专家委员会发布了"南极与南大洋气候系统(SASOCS)"白皮书,重点评估了过去50 a南极地区气候系统的变化并预估了未来100 a情景。白皮书总体认为,过去50 a南极气候系统变化表现出很强的区域特征。南极半岛地区升温明显,半岛及亚南极岛屿上的冰川均处于退缩状态;南半球环状模(SAM)转为正位相,西南极上空的暖湿气团入侵加强,南极冬季对流层有升温趋势,平流层变冷,极涡消退日期推迟;东南极外围的南极底层水变淡,Weddell海区的底层水有变暖趋势。虽有上述区域变化,整个南极地区在过去50 a中近地面气温并无明显升高,降水亦无明显增加。自20世纪80年代以来海冰面积也无明显变化,只在某些扇区变化强烈。模式预估结果为:到21世纪末南极内陆地区将增暖(3.4±1.0)℃, 海冰面积将缩小约30%。现有的冰盖模式尚不足以回答未来气候变暖情景下冰盖融化与海平面变化之间的定量关系,有待更深入研究。  相似文献   

19.
Summary Synoptic activity for the Arctic is examined for the period 1952–1989 using the National Meteorological Center sea level pressure data set. Winter cyclone activity is most common near Iceland, between Svalbard and Scandinavia, the Norwegian and Kara seas, Baffin Bay and the eastern Canadian Arctic Archipelago; the strongest systems are found in the Iceland and Norwegian seas. Mean cyclone tracks, prepared for 1975–1989, confirm that winter cyclones most frequently enter the Arctic from the Norwegian and Barents seas. Winter anticyclones are most frequent and strongest over Siberia and Alaska/Yukon, with additional frequency maxima of weaker systems found over the central Arctic Ocean and Greenland.During summer, cyclonic activity remains common in the same regions as observed for winter, but increases over Siberia, the Canadian Arctic Archipelago and the Central Aretic, related to cyclogenesis over northern parts of Eurasia and North America. Eurasian cyclones tend to enter the Aretic Ocean from the Laptev Sea eastward to the Chukchi Sea, augmenting the influx of systems from the Norwegian and Barents seas. The Siberian and Alaska/Yukon anticyclone centers disappear, with anticyclone maxima forming over the Kara, Laptev, East Siberian and Beaufort seas, and southeastward across Canada. Summer cyclones and anticyclones exhibit little regional variability in mean central pressure, and are typically 5–10 mb weaker than their winter counterparts.North of 65°N, cyclone and anticyclone activity peaks curing summer, and is at a minimum during winter. Trends in cyclone and anticyclone activity north of 65°N are examined through least squares regression. Since 1952, significant positive trends are found for cyclone numbers during winter, spring and summer, and for anticyclone numbers during spring, summer and autumn.With 11 Figures  相似文献   

20.
The ocean response to surface temperature transients is simulated with the use of the Hamburg large-scale geostrophic (LSG) ocean general circulation model (OGCM). The transition, from the present to a climate corresponding to a doubling of the atmospheric CO2 content, is compared with the reversed transition. For the Atlantic, the time scale for the deep ocean to adjust to the temperature changes was similar for both transitions. In the Pacific, the time scale is shorter for the present to warm transition than for the reverse case, a result of increased production of Antarctic bottom water (AABW) during the warm climate. While the transition from cold to warm climate shows no secular variability, the reversed transition generates considerable variability on time scales of 300–400 years. For the warm climate, oscillations with periods of 45 years are found in the Southern Ocean. Results of principal oscillation pattern (POP) analysis indicate that these oscillations are due to interaction between convection in the Southern Ocean and advected salinity anomalies in the Antarctic Circumpolar Current (ACC) and the Southern Pacific Ocean. Received: 19 September 1995 / Accepted: 15 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号