首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Previous studies suggest that the atmospheric precursor of El Ni ?no–Southern Oscillation(ENSO) in the extratropical Southern Hemisphere(SH) might trigger a quadrapole sea surface temperature anomaly(SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole(SPQ).The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode(SAM), the first Pacific–South America(PSA1) mode, and the second Pacific–South America(PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.  相似文献   

2.
The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June?July?August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)?1,larger than the multimodel ensemble mean of 0.18(10 yr)?1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD?SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD?SAM relationship may help reproduce long-term changes in the SAM.  相似文献   

3.
This paper documents a decadal strengthened co-variability of the Antarctic Oscillation(AAO)and ENSO in austral spring after the mid-1990 s.During the period 1979–93,the ENSO(AAO)spatial signatures are restricted to the tropics–midlatitudes(Antarctic–midlatitudes)of the Southern Hemisphere(SH),with a weak connection between the two oscillations.Comparatively,after the mid-1990 s,the El Ni o-related atmospheric anomalies project on a negative AAO pattern with a barotropic structure in the mid–high latitudes of the SH.The expansion of El Ni o-related air temperature anomalies have a heightened impact on the meridional thermal structure of the SH,contributing to a weakened circumpolar westerly and strengthened subtropical jet.Meanwhile,the ENSO-related southern three-cell circulations expand poleward and then strongly couple the Antarctic and the tropics.Numerical simulation results suggest that the intensified connection between ENSO and SST in the South Pacific since the mid-1990 s is responsible for the strengthened AAO–ENSO relationship.  相似文献   

4.
李建平  李艳杰  冯娟 《大气科学》2011,35(5):801-817
西澳大利亚州西南部(SWWA)是西澳大利亚州首府Perth的所在地,也是西澳州政治、经济、文化、教育和旅游的中心.自20世纪中期以来,SWWA地区雨季降水持续减少.本文利用近60年的观测及再分析数据,分析了已知的影响澳大利亚降水的热带海洋模态:厄尔尼诺—南方涛动(ENSO)、印度洋偶极子(IOD)和ENSOModoki...  相似文献   

5.
Understanding the SAM influence on the South Pacific ENSO teleconnection   总被引:3,自引:1,他引:2  
The relationship between the El Niño Southern Oscillation (ENSO) and the Southern Hemisphere Annular Mode (SAM) is examined, with the goal of understanding how various strong SAM events modulate the ENSO teleconnection to the South Pacific (45°–70°S, 150°–70°W). The focus is on multi-month, multi-event variations during the last 50 years. A significant (p < 0.10) relationship is observed, most marked during the austral summer and in the 1970s and 1990s. In most cases, the significant relationship is brought about by La Niña (El Niño) events occurring with positive (negative) phases of the SAM more often than expected by chance. The South Pacific teleconnection magnitude is found to be strongly dependent on the SAM phase. Only when ENSO events occur with a weak SAM or when a La Niña (El Niño) occurs with a positive (negative) SAM phase are significant South Pacific teleconnections found. This modulation in the South Pacific ENSO teleconnection is directly tied to the interaction of the anomalous ENSO and SAM transient eddy momentum fluxes. During La Niña/SAM+ and El Niño/SAM? combinations, the anomalous transient momentum fluxes in the Pacific act to reinforce the circulation anomalies in the midlatitudes, altering the circulation in such a way to maintain the ENSO teleconnections. In La Niña/SAM? and El Niño/SAM+ cases, the anomalous transient eddies oppose each other in the midlatitudes, overall acting to reduce the magnitude of the high latitude ENSO teleconnection.  相似文献   

6.
The January–March (JFM) climate response of the Northern Hemisphere atmosphere to observed sea surface temperature (SST) anomalies for the period 1855–2002 is analysed from a 35-member ensemble made with SPEEDY, an atmospheric general circulation model (AGCM) of intermediate complexity. The model was run at the T30-L8 resolution, and initial conditions and the early stage of model runs differ among ensemble members in the definition of tropical diabatic heating. SST anomalies in the Niño3.4 region were categorised into five classes extending from strong cold to strong warm. Composites based on such a categorisation enabled an analysis of the influence of the tropical Pacific SST on the Northern Hemisphere atmospheric circulation with an emphasis on the Pacific-North America (PNA) and the North Atlantic-Europe (NAE) regions. As expected, the strongest signal was detected over the PNA region. An “asymmetry” in the model response was found for the opposite polarity of the Niño3.4 index; however, this asymmetry stems mainly from the difference in the amplitude of model response rather than from the phase shift between responses to warm and cold El Niño-Southern Oscillation (ENSO) events. The extratropical signal associated with warm ENSO events was found to be stronger than that related to cold events. The results also reveal that, for the PNA region, the amplitude of the response is positively correlated with the strength of ENSO, irrespective of the sign of ENSO. With almost no phase shift between model responses to El Niño and La Niña, the linear component of the response is much stronger than the non-linear component. Although the model climate response over the NAE region is much weaker than that over the PNA region, some striking similarities with the PNA are found. Both sea level pressure and precipitation responses are positively correlated with the strength of ENSO. This is not true for the 200-hPa geopotential heights, and no plausible explanation for such a result could be offered. An appreciable linear component in model response over the NAE was also found. The model results over the NAE region agree reasonably well with observational studies. An additional analysis of the remote atmospheric response to very weak ENSO forcing (defined from the interval between 0.5σ and 1.0σ of the interannual variance) was also carried out. A discernible model response in the Northern Hemisphere to such a weak SST forcing was found.  相似文献   

7.
The present study investigates the interannual variation of June–November synoptic disturbance activity over the western North Pacific(WNP) and its relationship with large-scale circulation for the period 1958–2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Ni o3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects.Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.  相似文献   

8.
The mechanism of the South Pacific Ocean Dipole (SPOD) mode is examined, using a 50-year simulation of the Climate Forecast System, version 2 (CFSv2) and 50-year observation-based ocean–atmosphere analyses (1961–2010). It is shown that the SPOD, a sea surface temperatures (SST) seesaw between the subtropics and extratropics, is the dominant mode of the interannual variability in the South Pacific in both observations and CFSv2 simulation. CFSv2 also reproduces the seasonal phase-locking of the observed SPOD, with the anomaly pattern developing in austral spring, peaking in summer, and decaying in autumn. Composite analyses based on both observational and model data suggest that in the warm phase of SPOD, positive SST anomaly (SSTA) is initiated by weakened westerly winds over the central South Pacific in austral spring, which suppress the surface evaporative heat loss and reduce the oceanic mixed layer depth, both contributing to the SST warming. The wind-SST-mixed layer anomalies then evolve coherently over the next two seasons while the cold SSTA develops to the north. The wind perturbations are in turn a response to El Niño-Southern Oscillation (ENSO), which forces an atmospheric planetary wave train, the Pacific-South American pattern, emanating from an anomalous heat source in the tropical western Pacific. Moreover, SPOD is significantly correlated with the southern annular mode (SAM) while the latter is also significantly correlated with the ENSO index. This suggests that ENSO’s influence on the SPOD may be partially conveyed through SAM.  相似文献   

9.
Analysis of 149 raingauge series (1946–1988) shows a weak positive correlation between late summer rainfalls (January–March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds over the southern African plateau. These results are consistent with the strong droughts observed over all southern Africa during ENSO events since 1970.  相似文献   

10.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

11.
The relative impacts of Indian and Pacific Ocean processes on Tanzanian rainfall was evaluated using composite and correlation analyses. It was found that the seasonal responses of rainfall to positive Indian Ocean Dipole (pIOD) and El Niño events are substantial from September–October–November (SON) to December–January–February (DJF), whereas the Indian Ocean Dipole (IOD) exerts more control than El Niño–Southern Oscillation (ENSO) in both seasons. The associated relationship with the sea surface temperature (SST) and large-scale atmospheric circulations revealed distinct features. For the pure pIOD years, there is above-normal rainfall over the entire country. A strong rainfall condition is evident over the Lake Victoria basin and coastal and northeastern highland parts of the country during SON, while areas of the central and southern highlands exhibit substantial rains during DJF. For the pure El-Niño events, Tanzania has suffered from insignificant, weak, and non-coherent rainfall conditions during SON. However, a contrasting insignificant rainfall signature is found between the northern and southern parts of the country during the subsequent DJF season. For the co-occurrence of pIOD and El Niño, significant, excessive rainfall conditions are restricted to over the northern coast and northeastern areas of the country during SON, consistent with the rainfall pattern for pIOD. A weak, positive rainfall condition is observed over the entire country in the following season of DJF. Generally, in terms of Tanzanian rainfall, the IOD/ENSO variability and the associated impacts can be explained by the anomalous SST and circulation anomalies.  相似文献   

12.
Impacts of convective momentum transport (CMT) on tropical Pacific climate are examined, using an atmospheric (AGCM) and coupled GCM (CGCM) from Seoul National University. The CMT scheme affects the surface mainly via a convection-compensating atmospheric subsidence which conveys momentum downward through most of the troposphere. AGCM simulations—with SSTs prescribed from climatological and El Nino Southern Oscillation (ENSO) conditions—show substantial changes in circulation when CMT is added, such as an eastward shift of the climatological trade winds and west Pacific convection. The CMT also alters the ENSO wind anomalies by shifting them eastward and widening them meridionally, despite only subtle changes in the precipitation anomaly patterns. During ENSO, CMT affects the low-level winds mainly via the anomalous convection acting on the climatological westerly wind shear over the central Pacific—so that an eastward shift of convection transfers more westerly momentum toward the surface than would occur without CMT. By altering the low-level circulation, the CMT further alters the precipitation, which in turn feeds back on the CMT. In the CGCM, CMT affects the simulated climatology by shifting the mean convection and trade winds eastward and warming the equatorial SST; the ENSO period and amplitude also increase. In contrast to the AGCM simulations, CMT substantially alters the El Nino precipitation anomaly patterns in the CGCM. Also discussed are possible impacts of the CMT-induced changes in climatology on the simulated ENSO.  相似文献   

13.
Anticipating and mitigating wave-related hazards rely heavily on understanding wave variability drivers. Here, we describe wave conditions related to concurrent Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO) phases during the austral summer. To identify such conditions, significant wave height (Hs) and peak wave period (Tp) daily anomalies were composited during different SAM–ENSO phase combinations over the last four decades (1979–2018). Surface wind anomalies were also composited to assist in the interpretation of wave conditions. The composites show significant wave variability across all ocean basins and in several semi-enclosed seas throughout the different SAM–ENSO phase combinations. The Southern, Indian, and Pacific Oceans generally experience the strongest Tp anomalies during combinations of SAM phases with El Niño, and the weakest Tp anomalies during combinations of SAM phases with La Niña. The anomalously large waves observed in the south-western Pacific, Tasman Sea, and the Southern Ocean, previously ascribed to ENSO conditions, seem to be instead associated with the SAM variability. SAM-related atmospheric conditions are found to be able to modulate the intensity of ENSO-related winds over the South China Sea, which, in turn, alter the magnitude of waves in that region. These and other wave anomaly structures described here, especially those contrasting the behaviour expected for a given ENSO phase, such as the one found along the California coast, stress the importance of understanding relationships between wave parameters and climate patterns interactions.  相似文献   

14.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

15.
This analysis compares the climate impacts over North America during winter associated with various El Niño–Southern Oscillation (ENSO) indices, including the Niño 3.4 index, the leading tropical Pacific outgoing longwave radiation and sea surface temperature (OLR-SST) covariability, and the eastern Pacific (EP) and central Pacific (CP) types of ENSO identified from both partial-regression–empirical orthogonal function (EOF) and regression–EOF approaches. The traditional Niño 3.4 SST index is found to be optimal for monitoring the tropical Pacific OLR-SST covariability and for the tropical SST impact on North America. The circulation anomalies associated with the Niño 3.4 index project on both the Pacific/North American (PNA) and Tropical/Northern Hemisphere (TNH) patterns. The ENSO associated with the PNA tends to come from both the EP and CP ENSOs, whereas that associated with the TNH comes more from the EP ENSO. The variability of ENSO significantly affects North American temperature and precipitation, as well as temperature and precipitation extremes. For either the EP or CP types of ENSO, qualitatively similar patterns of climate and climate extreme anomalies are apparent associated with the indices identified by the two EOF approaches, with differences mainly in the anomalous amplitude. The anomalous patterns are generally field significant over North America for the EP ENSO but not field significant for the CP ENSO.

The circulation anomalies associated with ENSO are reinforced and maintained by synoptic vorticity fluxes in the upper troposphere. The anomalous surface temperature is mainly determined by the anomalies in surface radiative heating in the face of upward surface longwave radiative damping. The precipitation anomalies are supported by the vertically integrated moisture transport. The differences in atmospheric circulation, surface temperature, and precipitation among the various ENSO indices, including the intensity and spatial structure of the fields, can be attributed to the corresponding differences in synoptic eddy vorticity forcing, surface radiative heating, and vertically integrated moisture transport.  相似文献   


16.
Akio Kitoh 《Climate Dynamics》2007,28(7-8):781-796
How climate changes will modify the behavior of El Niño/Southern Oscillation (ENSO) is one of the important questions in future climate projections. An investigation under different climate forcing gives us a good insight on the mechanism of ENSO variability and its changes. In this paper, sensitivity on ENSO by progressive mountain uplift is investigated with an atmosphere–ocean coupled general circulation model. We used eight different mountain heights: 0% (no mountain), 20, 40, 60, 80, 100 (control run), 120, and 140%. Land–sea distribution is the same for all experiments and all mountains in the world are uniformly varied. Systematic changes in precipitation and circulation fields as well as SST are obtained with progressive mountain uplift. In the summertime, the precipitation area moved inland of the Asian continent with mountain uplift, while the Pacific subtropical anticyclone and associated trade winds became stronger. The western Pacific warm pool and ENSO also systematically changed. When the mountain height is low, a warm pool is located over the central Pacific due to weak trade winds in the Pacific. The model ENSO is strongest, its frequency longest, and is most periodic in the no mountain run. The model ENSO becomes weaker, shorter and less periodic when the mountain height increases. Strengthening the mean state trade winds and narrowing meridional extent of equatorial wind and ocean response by mountain uplift would be responsible for ENSO modulation.  相似文献   

17.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

18.
Cold-air mesocyclones remain a forecasting challenge in the southern hemisphere middle and higher latitudes, where conventional observations are lacking. One way to improve mesocyclone predictability is to determine their larger-scale circulation environments and associations with teleconnection patterns. To help realize this objective, reanalysis datasets on atmospheric and upper-ocean synoptic variables important in mesocyclone development are composited and compared to previously published mesocyclone spatial inventories. These analyses demonstrate a consistent association between higher frequencies of mesocyclones, greater sea ice extent and large positive differences in the SST minus low-altitude air temperature fields, coinciding with enhanced westerly low-level winds having a southerly component. Composites in the 1979–2001 period also were formed for opposite phases of El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and the Trans-Polar Index (TPI). Regions likely to be favorable for mesocyclone development relative to climatology were identified. The largest (smallest) variations in meso-cyclogenesis occur in the South Pacific (South Indian Ocean, south of Australia), and are dominated by ENSO. The SAM and TPI are of secondary importance, yet still influential, and exhibit strong regional-scale variations.  相似文献   

19.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   

20.
2008年初和2016年初分别经历了一次中等强度以上的La Niña和El Niño事件,在不同的厄尔尼诺-南方涛动(El Niño/Southern Oscillation,ENSO)背景下,云南均发生了低温雨雪冰冻天气。本文利用大气环流、海表温度、云南124个观测站逐月温度等资料,通过多种统计方法探讨了不同ENSO背景下极端冷事件发生的原因。结果表明:1)2008年初和2016年初云南冬季极端冷事件在2月表现更明显。2)不同ENSO背景下,2月大气环流和云南气温变化差异较大。La Niña(El Niño)年西伯利亚高压加强(减弱),位势高度场北(西)高南(东)低,西太平洋副高偏弱(强),菲律宾异常(反)气旋西北侧异常北(南)风加强,东亚冬季风偏强(弱),云南东部气温偏低(高)。3)2008年和2016年的东北太平洋大气环流异常对赤道中东太平洋海温异常均有响应,同时2008年赤道中东太平洋冷海温作用激发的菲律宾气旋西部偏北气流对东亚冬季风的加强和向南活动有重要影响,而2016年赤道中东太平洋暖海温对菲律宾地区环流变化的影响并不显著。4)北极涛动(Arctic Oscillation,AO)和北极海冰变化对2008年2月和2016年2月西伯利亚高压的加强的影响表现出一定的差异特征,2月AO负位相变化对2008年西伯利亚高压的加强影响较大,而2月北极海冰偏少对2016年西伯利亚高压加强的影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号