首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Six locations across mainland Portugal were selected for exposing Parmelia sulcata, for a one-year period (8 months for one site), with simultaneous measurement of total (dry + wet) deposition (one-month periods). The exposed lichens and the total (dry + wet) deposition were analysed for cobalt contents by INAA (instrumental neutron activation analysis) and ICP-MS (inductively coupled plasma mass spectroscopy), respectively. The designated wet deposition was evaluated through the collected water volume; the designated dry deposition was assessed after the (dried) residual mass of the wet deposition. An excellent agreement between Co contents in exposed lichens and the cumulative (1) Co contents in the dry deposition, (2) dry deposition, and (3) wet deposition has been found for the locations with alternate drought and precipitation months, high dry deposition, and high Co contents in the latter. Continuous rainfall was found to hinder the Co accumulation in the lichen due to its release from the lichen and/or lower Co contents in the dry deposition. At three locations, P. sulcata Co contents, after subtraction of the background (before exposure), equalled or exceeded the Co contents in the cumulative dry deposition at the end of the exposure time. The optimal exposure period for this species likely depends on the exposure conditions.  相似文献   

2.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures  相似文献   

3.
Parameterizing turbulent diffusion through the joint probability density   总被引:3,自引:3,他引:0  
The convective mass flux parameterization often used in meteorological modeling expresses the vertical flux of a transported scalar as proportional to the product of the difference in mean values of the scalar in updrafts and downdrafts and their characteristic velocity. The proportionality factor is a constant to be specified. We show that this proportionality factor also appears in the relaxed eddy accumulation technique of Businger and Oncley. That associates the surface-layer flux of a scalar with the product of the standard deviation of vertical velocity and the mean concentration difference between updrafts and downdrafts.We show that this constant (b) is determined uniquely by the joint probability density (jpd) of vertical velocity and the scalar. Using large-eddy simulation, we generate this jpd for a conservative scalar diffusing through a convective boundary layer. It has quite different forms in top-down and bottom-up diffusion geometries. The bottom-up jpd is fairly well represented by a jointly Gaussian form and implies b ~ 0.6, in good agreement with the surface-layer value reported by Businger and Oncley. The top-down jpd is strikingly non-Gaussian and gives b ~ 0.47. Updrafts carry the bulk of the scalar flux - 70% in the bottom-up case, 60% in the top-down case.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
Summary Climatological studies show that the Altai-Sayan lee side is one of the major cyclogenesis areas in the Northern Hemisphere. In case of the Altai-Sayan lee cyclogenesis, the surface cyclone is generated when a primary cyclone is swept north of the mountains. In the mid-troposphere, a trough develops and finally turns into a cutoff low within 48 h. The main synoptic features are similar to those of Alpine cyclogenesis. Numerical simulations are performed to assess the effect of different representation of orography on the Altai-Sayan cyclogenesis. Two experiments are performed, a step-mountain (ETA) and an envelope orography (SGM) experiment. The ETA experiment produced the cyclogenesis in a way similar to that in the analysis both at the surface and at mid-troposphere. The SGM experiment failed in the simulation of the upper cutoff low. The difference in predicted pressure between the ETA and the SGM experiment shows a dipolar structure suggesting that the blocking effect of the mountains is essential in the development of the Altai-Sayan lee cyclogenesis.With 7 Figures  相似文献   

5.
Thermal comfort of man in different urban environments   总被引:2,自引:4,他引:2  
Summary On July 29, 1985, a hot summer day, biometeorological measurements were performed simultaneously in three different urban structures within the city of Munich and in the trunk space of a nearby tall spruce forest. Based on the results of these experiments the following thermophysiologically relevant biometeorological indices were calculated: Predicted mean vote, skin wettedness and physiologically equivalent temperature. These three indices are derived from different models for the human energy balance. They allow the assessment of the thermal components of the microclimates at the selected sites with regard to application in urban planning. The results quantitatively show the great heat stress in the urban structure street canyon, exposed to south, whereas in the trunk space of the tall spruce forest there is nearly an optimal climate even on hot summer days. Between these extremes the results for street canyon, exposed to north show a little higher heat load than for backyard with trees.
Zusammenfassung An einem heißen Sommertag, dem 29. Juli 1985, wurden in drei Stadtstrukturen in München und im Stammraum eines nahegelegenen Fichtenhochwaldes zeitgleich biometeorologische Messungen durchgeführt. Mit den Meßergebnissen wurden folgende thermophysiologisch relevante biometeorologische Indizes berechnet: Predicted mean vote, Hautbenetzungsgrad und physiologisch äquivalente Temperatur. Diese drei Indizes beruhen auf verschiedenen Modellen zur menschlichen Energiebilanz. Mit den drei Indizes wurden die thermischen Komponenten der Mikroklimate an den ausgewählten Meßplätzen im Hinblick auf Stadtplanungsaufgaben bewertet. Die Ergebnisse zeigen quantitativ die relativ große Hitzebelastung bei der Stadtstruktur Straßenschlucht, nach Süd exponiert, während im Stammraum des Fichtenhochwaldes selbst an heißen Sommertagen nahezu optimale Bedingungen herrschen. Zwischen diesen Extremen liegen die Ergebnisse für die anderen Meßplätze, wobei für Straßenschlucht, nach Nord exponiert die Wärmebelastung etwas höher als für Innenhof mit Bäumen ist.


With 6 Figures  相似文献   

6.
ALPEX-Simulation     
Summary In a project ALPEX-Simulation, sponsored by the Österreichischer Fond zur Förderung der wissenschaftlichen Forschung (FWF), all eight cases of ALPEX-SOP cyclones were numerically simulated with a fine mesh isentropic model of the atmosphere. These numerical simulations in six-hourly intervals allow a deeper insight into the synoptics and dynamics of the cyclogeneses in the Western Mediterranean, especially into the genesis of the two basic types of cyclones: the so-called Überströmungs-type and Vorderseiten-type. In the first phase of cyclogenesis of the Überströmungs-type, the blocking and flow splitting of the cold air due to the Alps and the canalization between the Alps and the Massif Central are important. Cold air flows cyclonically around the western part of the Alps, creating a vorticity maximum at the south western edge of the Alpine, bow and leads also to an enhanced PV. In connection with warm air in the Mediterranean, a strong baroclinic zone is generated. The interaction between the arriving PV maximum in the upper troposphere and the enhanced PV at the bottom leads to cyclogenesis in the Western Mediterranean. In the case of the Vorderseiten-type warm air advection dominates with the exception of a shallow layer of cold air in the inner Po-Valley, which is shielded by the Alpine ridge. A well-pronounced PV maximum builds up and couples with the PV maximum arriving at upper levels, even before the cold air, coming from the north-west, has surrounded the Alps. The cold air only intensifies the development by raising the baroclinity. Therefore, the Vorderseiten-cyclogenesis is an orographically modified cyclogenesis, in the course of which the cyclonic development is triggered by the Alps, whereas the Überströmungs-cyclogenesis is an orographically induced cyclogenesis i.e. a true lee cyclogenesis.With 14 FiguresDied in a tragic traffic accident on June 6, 1993.  相似文献   

7.
Periodicity of annual precipitation in different climate regions of Croatia   总被引:1,自引:1,他引:0  
Summary The periodicity of a 100-year series of annual precipitation over Croatia has been studied by means of power spectrum analysis at 3 stations representing the different climatic regions of Croatia. The annual precipitation variance spectra in the continental lowland (Osijek) and at the north East Adriatic coast (Crikvenica) can be fitted by Markov white noise continuum, but in the transitional region between the Dinaric Alps and the Pannonian lowland (Zagreb-Gri) a non-white noise continuum is necessary. Quasi-periodic oscillations appear in two spectra ranges: short (2.2 and 4.7 years) and medium (25.0 and 33.3 years). These results are compared with those of other authors for other parts of the Europe.With 2 Figures  相似文献   

8.
Analyses indicate that the Atlantic Ocean seasurface temperature (SST) was considerably colder at the beginning than in the middle of the century. In parallel, a systematic change in the North Atlantic sea-level pressure (SLP) pattern was observed. To find out whether the SST and SLP changes analyzed are consistent, which would indicate that the SST change was real and not an instrumental artifact, a response experiment with a low-resolution (T21) atmospheric GCM was performed. Two perpetual January simulations were conducted, which differ solely in the Atlantic Ocean (40° S-60° N) SST: the cold simulation utilizes the SSTs for the period 1904–1913; the warm simulation uses the SSTs for the period 1951–1960. Also, a control run with the model's standard SST somewhat between the cold and warm SST was made. For the response analysis, a rigorous statistical approach was taken. First, the null hypothesis of identical horizontal distributions was subjected to a multivariate significance test. Second, the level of recurrence was estimated. The multivariate statistical approaches are based on hierarchies of test models. We examined three different hierarchies: a scale-dependent hierarchy based on spherical harmonics (S), and two physically motivated ones, one based on the barotropic normal modes of the mean 300 hPa flow (B) and one based on the eigenmodes of the advection diffusion operator at 1000 hPa (A). The intercomparison of the cold and warm experiments indicates a signal in the geostrophic stream function that in the S-hierarchy is significantly nonzero and highly recurrent. In the A-hierarchy, the low level temperature field is identified as being significantly and recurrently affected by the altered SST distribution. The SLP signal is reasonably similar to the SLP change observed. Unexpectedly, the upper level stream-function signal does not appear to be significantly nonzero in the B-hierarchy. If, however, the pairs of experiments warm versus control and cold versus control are examined in the B-hierarchy, a highly significant and recurrent signal emerges. We conclude that the cold versus warm response is not a small disturbance that would allow the signal to be described by eigenmodes of the linear system. An analysis of the three-dimensional structure of the signal leads to the hypothesis that two different mechanisms are acting to modify the model's mean state. At low levels, local heating and advection are dominant, but at upper levels the extratropical signal is a remote responce to modifications of the tropical convection.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dilmenil.AWI Publication no. 254  相似文献   

9.
Summary ¶In order to better understand land-atmosphere interactions and increase the predictability of climate models, it is important to investigate the role of forest representation in climate modeling. Corresponding to the big-leaf model commonly employed in land surface schemes to represent the effects of a forest, a so called big-tree model, which uses multi-layer vegetation to represent the vertical canopy heterogeneity, was introduced and incorporated into the National Center for Atmospheric Research (NCAR) regional climate model RegCM2, to make the vegetation model more physically based. Using this augmented RegCM2 and station data for China during 1991 Meiyu season, we performed 10 experiments to investigate the effects of the application of the big-tree model on the summer monsoon climate.With the big-tree model incorporated into the regional climate model, some climate characteristics, e.g. the 3-month-mean surface temperature, circulation, and precipitation, are significantly and systematically changed over the model domain, and the change of the characteristics differs depending on the area. Due to the better representation of the shading effect in the big-tree model, the temperature of the lower layer atmosphere above the plant canopy is increased, which further influences the 850hPa temperature. In addition, there are significant decreases in the mean latent heat fluxes (within 20–30W/m2) in the three areas of the model domain.The application of the big-tree model influences not only the simulated climate of the forested area, but also that of the whole model domain, and its impact is greater on the lower atmosphere than on the upper atmosphere. The simulated rainfall and surface temperature deviate from the originally simulated result and are (or seem to be) closer to the observations, which implies that an appropriate representation of the big-tree model may improve the simulation of the summer monsoon climate.We also find that the simulated climate is sensitive to some big-tree parameter values and schemes, such as the shape, height, zero-plane displacement height and mixing-length scheme. The simulated local/grid differences may be very large although the simulated areal-average differences may be much lower. The area-average differences in the monthly-mean surface temperature and heat fluxes can amount to 0.5°C and 4W/m2, respectively, which correspond to maximum local/grid differences of 3.0°C and 40W/m2 respectively. It seems that the simulated climate is most sensitive to the parameter of the zero-plane displacement among the parameters studied.  相似文献   

10.
Parameterization of evaporation from a non-plant-covered surface is very important in the hierarchy strategy of modelling land surface processes. One of the representations frequently used in its computation is the resistance formulation. The performance of the evaporation schemes using the , , and their combination resistance approaches to parameterize evaporation from bare soil surfaces is discussed. For that purpose, the nine schemes, based on a different dependence of and on volumetric soil moisture content and its saturated value, are used.The tests of performances of the considered schemes are based on time integrations by the land surface module (BARESOIL) using observed data. The 23 data sets at a bare surface experimental site in Rimski anevi, Yugoslavia on chernozem soil, were used for the resistance algorithm evaluation. The quality of the schemes was compared with the observed values of the latent heat flux using several statistical parameters.  相似文献   

11.
Summary Hybrid modeling entails the combination of a numerical weather prediction model and a symbolic model. The latter uses symbolic objects, their characterizing attributes and sets of behavioral constrains which prescribe changes in the states of these objects as functions of time, space, and other imposed quantitative or heuristic conditions. Integration of these two modeling components for an on-line, real-time, operational system is feasible only if both the numerical and the symbolic model can be executed in a distributed mode, i.e. at a user's location rather than in a central weather service office. This condition entails the design of a numerical model that can run on relatively inexpensive desktop workstations or high-end PCs. Given such a capability, the output from the numerical model can be used to satisfy a number of behavioral constraints of objects (such as thunderstorm, blizzard, etc.), defined in the symbolic model. These constraints can be embedded invisibly as functions of time and pixel location on the computer screen, to be called upon as soon as the respective object is activated, e.g. by placing an icon on the screen.To make such a hybrid weather prediction model responsive to details in topography, it will have to be able to interface with a geographic information system (GIS) database. Since such databases can be very voluminous, management procedures for indexing and rapid information retrieval have to be instituted. The approach discussed here involves restructuring of given GIS data into B+ trees.The hybrid prediction model whose design is described in this paper, executes very quickly on a PC (e.g. a 33 megahertz Intel 80486 chip based machine). It allows assimilation of locally generated observational data to improve forecast quality, and can respond to queries of a highly specialized nature in support of tactical decisions within the time frame between nowcasting (3 hours) and 24 hours.With 6 Figures  相似文献   

12.
The processes of interaction between the atmospheric surface and mixed layers in daytime convective conditions over land are studied using a data set obtained during flights by an instrumented aircraft. Profiles of partitioned run-averaged statistics and examples of time series plots are discussed in the light of results from a recently published study by the authors, in which the average structure and flow within coherent eddies was reconstruced using a compositing technique. This evidence is used to support a conceptual model of the mechanisms of interaction between surface-layer plumes and mixed-layer thermal columns. The divergent flow created near the surface by the downdraft arms of the large-scale mixed-layer circulation patterns, forces the development of lines of convergence in the surface layer (the so-called thermal walls), which channel air into the bases of the mixed-layer thermals. Plumes progressively group and merge together with height in the surface and free convection layers, and move along these convergence lines toward large collector plumes at the intersection points, or hubs. Above the hubs are the thermals, and air parcels originating from plumes and their environment are strongly mixed as they rise, leading to an increased difficulty of the conditional sampling method to distinguish between them. The observed influence of mixed-layer convective processes far down into the surface layer, and the form of the averaged profiles, supports recent refinements of the theory of surface-layer structure suggested in Kader and Yaglom (1990).Notation CBL convective boundary layer - SL surface layer - FCL free convection layer - ML mixed layer  相似文献   

13.
Summary Mechanisms associated with Alpine lee cyclogenesis during the early phase of their generation are investigated using a variational quasigeostrophic filter technique. It was possible to extract the quasigeostrophic signal from the available analyzed real data set.The results presented here are for the 11–12 March 1982, an example of so-called orographically induced lee cyclogenesis. Non-quasigeostrophic fields, calculated as a difference between observations and the quasigeostrophic fields, show significant magnitudes indicating the possible importance of non-quasigeostrophic processes. A dipole structure in the residual geopotential field was observed, similar to the results of numerical model experiments. Also, a strong upper-level non-quasigeostrophic divergence was found in the Alpine region 24 hours prior to lee cyclogenesis, lasting for 6–12 hours. On the other hand, quasigeostrophic results indicate only a local effect of mountain slopes, suggesting possibly a dominant role of the low-level blocking. A hypothetical scenario of Alpine lee cyclogenesis is proposed, based on results obtained here.With 14 Figures  相似文献   

14.
Summary Feature-based predictability stratifies forecast model errors on the basis of individual weather systems. We examine only one level and chose very simple categories: high, cut-off low, trough and block. European Centre for Medium-range Weather Forecasts data are used. We emphasize systems found near Australia and New Zealand during winter 1987. Calculations for the preceding summer and fall and for other midlatitude regions of the southern hemisphere yield similar results.The approach herein is fully automated and simple to implement. Features are identified in the verification field. Then an error calculation is made on moving grids that are each centered upon and contain one system.The total error is the root mean square difference (RMS) between forecast and verification. The structural error is the RMS difference when the forecast and verification small grids are independently centered upon the corresponding feature in each field. The difference between the structural and total errors, called the locational error, is typically a quarter of the total. Even when normalized by presistence, highs are forecast better than troughs; cut-off lows and troughs have similar errors. The distance between the forecast and observed positions is typically 3° longitude west and 0.5° latitude north of where features should be at 72 hours. The model has a systematic bias of too small amplitude of vorticity. No relation is found between skill and jet stream splitting.With 4 Figures  相似文献   

15.
Zusammenfassung In der vorliegenden Arbeit werden neue Klassifikationsprinzipien für Großwetterlagen entwickelt. Bisher wurde bei Wetterlagenklassifikationen das Druckfeld zugrunde gelegt, wobei quasistationären Druckzentren eine nicht berechtigte Vorrangstellung eingeräumt wurde. In der hier versuchten Klassifikation wird vom Strömungsfeld ausgegangen, das in elementare Formen zerlegt wird. Eine zu diesem Zweck durchgeführte statistische Untersuchung ergab, daß alle im Strömungsfeld auftretenden Zirkulationstypen auf drei Grundformen zurückgeführt werden können. Diese Grundformen sind:Driften, Wellen undWirbel.Die Untersuchung ergab im einzelnen, daß in mittleren Breiten der nördlichen Hemisphäre bei 49% aller untersuchten Fälle Driften, bei 23% Wellen und bei 28% Wirbel auftraten.In der hier durchgeführten Klassifikation wird das Druckfeld durch das Strömungsfeld und der Begriff Großwetterlage durch den umfassenderen Begriff des Zirkulationstyps ersetzt. Damit wird der unberechtigte Vorrang der Druckformen bei der Wetterlagenklassifikation aufgegeben. Die Klassifizierung der Zirkulationstypen ergibt sich schließlich durch Kombination der drei Zirkulationselemente: Drift, Welle und Wirbel.
Summary New principles of classification for large-scale weather situations are outlined in this paper. Hitherto the pressure-field has been taken as a basis for such classifications by conceding a precedence of an unjustified position to semi-permanent centres of pressure. The new classification starts from the field of large-scale motions, which is dissected in elementary models. A statistical test yielded the possibility to reduce all types of atmospheric circulations in the following three elementary models:drifts, waves andeddies.In detail it was found out, that drifts occur in 49%, waves in 23% and eddies in 28% of all cases investigated.In the new classification the term pressure-field is substituted by field of motion and the expression large-scale weather situation by the more comprehensive conception type of circulation. By that the unjustified priority of pressure-centers in classifying weather situations is abolished. At last the classification of the types of circulation follows from a combination of the three elementary models: drift, wave and eddy.

résumé La présente étude développe de nouveaux principes de classification des situations météorologiques. Alors que jusqu'ici on s'est fondé sur le champ de pression ce qui conduisait à attribuer aux centres d'action quasi stationnaires un rôle trop important, l'auteur part ici du champ de mouvement décomposé en formes élémentaires. Un examen statistique lui a montré que tous les types de circulation peuvent se ramener à trois formes fondamentales:courants, ondulations ettourbillons.Aux latitudes moyennes de l'hémisphère Nord les courants représentent le 49%, les ondulations le 23% et les tourbillons le 28%.Au champ de pression se substitue donc le champ de courant, et les situations météorologiques se groupent en types de circulation ce qui supprime le rôle prépondérant des formes isobariques. Le classement final des types de circulation résulte de la combinaison des trois types mentionnés:courants, ondulations ettourbillons.


Mit 15 Textabbildungen  相似文献   

16.
Summary The interannual variations in sea surface temperature (SST) in the equatorial east Pacific, which are dominated by the El Niño phenomenon, are shown for the period 1870–1983. Since 1870 25 significant warm events have occurred. These events are classified as weak, moderate, strong and very strong, according to the normalized SST anomalies in the region 130° W–80° W, 0°–5° S.The spatial and temporal development of a composite El Niño/Southern Oscillation (ENSO) episode, based on 10 very strong or strong events, is presented in terms of SST, surface wind and divergence anomalies for the tropical Pacific (10° N–30° S). During its evolution the following phases are distinguished: Antecedent Conditions, Onset Phase, Peak Phase, Mature Phase and Dissipation Stage.Some aspects of ocean-atmosphere interaction associated with this evolution and, more specifically, the initiation of the composite event, are described. Seasonally varying feedback processes between SST, surface wind and convergence anomaly patterns in the western Pacific/Indonesian region suggest a possible mechanism for the initiation of typical ENSO events.
Zusammenfassung Die interannuären Variationen der Meeresoberflächentemperatur (SST) im äquatorialen Ostpazifik, die von dem El Niño-Phänomen dominiert werden, werden für die Periode 1870–1983 aufgezeigt. Seit 1870 traten 25 signifikante Ereignisse auf. Diese Ereignisse werden entsprechend den normierten SST-Anomalien in der Region 130° W–80° W, 0°–5° S als schwach, mittel, stark und sehr stark klassifiziert.Die räumliche und zeitliche Entwicklung einer Komposit-El Niño/Southern Oscillation (ENSO)-Episode, die auf 10 sehr starken bzw. starken Ereignissen basiert, wird anhand von SST-, Bodenwind- und Divergenzanomalien für den tropischen Pazifik (10° N–30° S) dargestellt. Während ihrer Entwicklung werden die folgenden Phasen unterschieden: Vorausgehende Bedingungen, Einsetzphase, Spitzenphase, Reifestadium und Auflösungsstadium.Einige Aspekte der Wechselbeziehungen Ozean—Atmosphäre werden im Zusammenhang mit der Entwicklung und insbesondere der Auslösung des Komposit-Ereignisses beschrieben. Jahreszeitlich variierende Rückkopplungsprozesse zwischen SST-, Bodenwind- und Konvergenzanomalien in der westpazifischen/indonesischen Region stellen einen möglichen Mechanismus für die Auslösung typischer ENSO-Ereignisse dar.


With 9 Figures  相似文献   

17.
Summary Koshava is a gusty wind of moderate to strong intensity, blowing from the south-eastern direction, over the area of the Republic of Serbia. It is caused by the interaction between the synoptic circulation and the orography of the Carpathian and the Balkan mountains. The Koshava wind can damage buildings, factories and industrial plants or city infrastructure. Therefore it is important to estimate its gust and the gustiness factor on the basis of the measured data.This paper discusses a statistical analysis of wind data in the maximum influence area of the Koshava wind in the periods of maximum duration of Koshava. The focus of the paper is the examination of urban and suburban effects on Koshava wind and the correlation between the instantaneous maximum wind speed and the hourly mean wind speed. The best fitting with various empirical distributions is proposed.With 10 Figures  相似文献   

18.
Whether in classical networks such as meteorological networks of in more recent ones of atmospheric chemistry, a wealth of data is at hand. These data have been evaluated in a manner depending on the purpose of the network. However, much more information is hidden in these time series and waits for discovery. Only the imagination of scientists is needed. Four examples are given which lead to new information about the atmospheric aerosol and the behaviour of the atmosphere. These examples are: Atmospheric turbidity from sunshine recordings, Meteorological drainage area from the variance of observations, Location of point sources from air mass trajectories, and Total vertical ozone from turbidity measurements.  相似文献   

19.
Influence of heterogeneous land surfaces on surface energy and mass fluxes   总被引:1,自引:0,他引:1  
Summary Land-surface heterogeneity affects surface energy fluxes. The magnitudes of selected land-surface influences are quantified by comparing observations with model simulations of the FIFE (First ISLSCP Field Experiment) domain. Several plausible heterogeneous and homogeneous initial and boundary conditions are examined, although soilmoisture variability is emphasized. It turns out that simple spatial averages of surface variation produced biased flux values. Simulated maximum latent-heat fluxes were approximately 30 to 40 W m–2 higher, and air temperatures 0.4 °C lower (at noon), when computations were initialized with spatially averaged soil-moisture and leaf-area-index fields. The planetary boundary layer (PBL) height and turbulent exchanges were lower as well. It additionally was observed that (largely due to the nonlinear relationship between initial soil-moisture availability and the evapotranspiration rate), real latent-heat flux can be substantially less than simulated latent-heat flux using models initialized with spatially averaged soil-moisture fields. Differences between real and simulated fluxes also vary with the resolution at which real soil-moisture heterogeneity is discretized.With 8 Figures  相似文献   

20.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号