首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main rock types in the area north of the Frederikshåbs isblink are streaky gneisses, massive tonalites and ‘supracrustals’. The gneisses are thought to be the parent rocks of the tonalite and can be seen to merge into tonalite across a narrow zone of nebulite. Rb-Sr whole rock points from samples of gneiss and tonalite fall on a common isochron with an age of 2662 ± 116 m.y. (2σ) and initial ratio of 0.7032 ± 0.0008 (2σ) (half-life of 87Rb = 50 b.y.). The uncertainties in the isochron could mask small age and initial ratio differences between the gneiss and tonalite. However, our present interpretation is that the isochron reflects a homogenization of Sr isotopes within and between the two rock types. The presence of two out of four K-feldspar points on the whole rock isochron is interpreted as evidence that the K-feldspar became closed to Sr isotope migration at the same time as the whole rocks. Subsequent local isotopic disturbance has resulted in a minor loss of radiogenic strontium from two of the samples. The interpretation of the K-feldspar as a product of the epidoteamphibolite facies metamorphism allows the conclusion that the whole rock-K-feldspar isochron is recording a Sr isotopic homogenization during this event and is not related to the formation of the gneiss or the tonalite. Rb-Sr closure ages of ca. 2515 m.y. for muscovite and ca. 1950 m.y. for biotite could be recording separate isotopic disturbances or the cessation of strontium isotope migration as the minerals cooled through their characteristic blocking temperatures. Zircons from both the gneiss and the tonalite have igneous morphological features. Their U-Pb systems are complex, however, and suggest a multistage history of isotopic disturbance. Whereas the zircon U-Pb and whole rock Rb-Sr results suggest a maximum age of approximately 3000 m.y. for the parent rocks of the gneiss and tonalite they do not entirely exclude the possibility that the rocks represent older crust in which the isotopic systems have been almost completely reset ca. 2700 m.y. ago.  相似文献   

2.
Whole-rock Rb-Sr isochron dating of Sn-bearing granites and alkaline rocks from Gejiu, Yunnan Province has been conducted for their emplacement ages and initial87Sr/86Sr ratios. The Sr isotopic compositions of apatites from some basic rocks in Jiasha, and granite bodies also have been studied in detail. The genesis and evolution of Gejiu Sn-bearing granites as well as ore-search indicators are discussed on the basis of the available data in conjunction with the geochemical data on trace elements (such as Rb and Sr), Sr isotopic characteristics of the volcanic rocks, meta-diabase and host rocks and the isotopic features of ore leads.  相似文献   

3.
This work provides unequivocal evidence of the existence of Mesoarchean granulite facies metamorphic event in the Palghat-Cauvery Shear Zone (PCSZ) of South India. Charnockite samples from two prominent hills at Kollaimalai (KM) and Pachchaimalai (PM) as well as from two quarries within the Bhavani Shear Zone (BSZ) have been analyzed for their Sm-Nd and Rb-Sr ages to investigate the existence or otherwise of the Archean granulite facies events within the PCSZ. The Rb-Sr whole-rock isochron ages for massive charnockites from both the hills appear to be contemporaneous at 2.9 Ga with the initial Sr isotopic ratios of 0.7012 and 0.7014, respectively. However, the Rb-Sr data for whole-rock samples of basic granulites from one of the quarries within the BSZ indicate open system behavior, while the charnockites from the other quarry have insufficient spread in 87Rb/86Sr ratios and do not yield any isochron. The Sm-Nd data, on the other hand, do not distinguish between the massive charnockite and the lowland charnockite and yield Depleted Mantle model ages in the range 2.98±0.3 Ga for all of them. The ɛT CHUR for all of these rocks are highly positive. Both the Sr isotopic ratios and positive ɛT CHUR values for these rocks strongly suggest a mantle source for all of them. An upper age limit of ∼3.28 Ga may be assigned to the crustal accretion of the protolith of all these rocks on the basis of their Nd model ages. The Rb-Sr isochron ages of 2.9 Ga for the two massifs could be the age of granulite facies metamorphism. Thus, the metamorphism in the KM and PM Hills took place within ∼100 Ma of crustal accretion of these rocks and probably was part of the same geological event of crust formation and metamorphism. The open system behavior with respect to Rb-Sr isotopes in the basic granulite from Bhavani is possibly due to the migration of Sr isotopes, triggered during the later shearing of these rocks.  相似文献   

4.
Precambrian granitic basement rocks obtained from well BH-36 of Bombay High Field, western offshore of India has been studied both by Rb-Sr and K-Ar dating methods. Seven basement samples chosen from two cores have yielded whole rock Rb-Sr isochron age of 1446 ± 67 Ma with an initial87Sr/86Sr ratio of 0.7062 ± 0.0012. This age has been interpreted as the formation/emplacement time of the granite. Two biotite fractions of different grain size separated from a sample CC6B2T have yielded Rb-Sr mineral isochron age of 1385 ± 21 Ma. However, these fractions when studied by K-Ar dating method have yielded slightly higher but mutually consistent ages of 1458 ± 43 Ma and 1465 ± 43 Ma, respectively. Further, two biotites separated from additional samples CC5B9T and CC6B3B have yielded K-Ar ages of 1452 ± 42 Ma and 1425 ± 40 Ma with an overall mean age of 1438 ± 19 Ma. This mean K-Ar age is indistinguishable from whole rock Rb-Sr isochron as well as mineral isochron age within experimental error. The similarity in the whole rock and biotite ages obtained by different isotopic methods suggests that no thermal disturbance has occurred in these rocks after their emplacement/formation around 1450 Ma ago. The present study provides the evidence for the existence of an important Middle Proterozoic magmatic event around 1400-1450 Ma on the western offshore of India which, hitherto, was thought to be mainly confined to the eastern Ghats, Satpura and Delhi fold belt of India. This finding may have an important bearing on the reconstruction of Proterozoic crustal evolution of western Indian shield.  相似文献   

5.
微区-微量样品Rb-Sr同位素分析技术及其应用前景   总被引:1,自引:0,他引:1  
利用微钻取样技术和微量样品Rb-Sr同位素分析方法,本文对出露在东秦岭造山带的中生代合峪花岗岩的自形钾长石巨晶进行微区-微量样品Rb-Sr同位素组成分析。分析结果表明,钾长石斑晶具有显著的Rb/Sr比值和Sr同位素组成变化,斑晶和基质钾长石均构成年龄为132~133Ma的Rb-Sr等时线,代表岩浆的后期冷却时代。钾长石晶体的初始87Sr/86Sr比值由边缘相到中心相没有明显的变化,代表花岗质岩浆结晶阶段的Sr同位素组成,暗示合峪花岗岩的钾长石巨晶为原生成因。以高空间分辨率为特征,微区取样技术已经广泛地应用在变质岩和深成岩浆岩的同位素年代学和成因研究。结合微量样品同位素分析技术,微区-微量样品Rb-Sr同位素方法有望在火山岩的成因和年代学方面得到应用。  相似文献   

6.
The paper reports Rb-Sr isotopic data obtained by the authors on ore-hosting rocks from the Kairagach epithermal Au-Ag deposit in the Kurama ore district in the Central Tien Shan, Uzbekistan. The influence of mineralizing hydrothermal solutions on the host volcanic rocks of andesite-dacite composition and the metasomatic alterations of these rocks are proved to have been resulted in with the homogenization of the Sr isotopic composition, i.e., its equalization between various modes of Sr occurrence. This offers additional possibilities of the application of the Rb-Sr isochron method in dating hydrothermal processes. The application of Rb-Sr isotopic methods in studying samples from the Kairagach deposit allowed the authors to obtain dates whose reliability corresponds to isochron one (291 ± 3 Ma) or is very close to it (290 ± 6 Ma). The data thus obtained provide good reasons to believe that the corresponding epithermal mineral deposits in the Kurama ore district (Kairagach, Kochbulak, and others) were genetically related to and simultaneous with the emplacement subvolcanic porphyry intrusions.  相似文献   

7.
Developed in the southeast coast of te East Shandong Peninsula,the Mesozoic fault-magma belt consists of five rock series:the syenite series;the monzonite series;the megaporphyritic monzogranite series;the biotite-granite series;and the alkali granite seres.Based on their Rb-Sr isochron ages(122-220Ma),these rock series may be divided into three magma subcycles dated at Triassic,Late Jurassic and Early Cretaceous.The initial ^87Sr/^86Sr ration in these rock series range from 0.70436 to 0.7155.The starting points of the Rb-Sr isochrons exhibit four different distribution trends on the(^87Sr/^86Sr)i-^87Rb/^86Sr diagram.These characteristics show that the multiple granitic rock series are different in genesis and derivation.The syenite series might be derived from the combination of mantle-derived magma and crustal material,and the others could be derived from granulite-facies and amphibilite-facies rocks in the deep crust.  相似文献   

8.
The small leucogranite plutons occurring in linear belts in the Higher Himalayas have formed due to post-collision partial melting within the Himalayan crust. Several studies have documented that the Sr isotopic ratios in the granite bodies show chaotic variation and meaningful Rb-Sr isochron ages are difficult, if not impossible, to obtain. In tectonically overthickened crust, the depth-temperature profile (geotherm) remains strongly transient for the first tens of millions of years. It is proposed here that the intersecting relations between the transient geotherms and activity-dependent solidus/melting curves may generate small pods of magma at different depths and at different times. Each of these pods will have its unique Sr isotopic ratios. Coalescence of these small pods of magma without any effective homogenization due to deformation-induced fast segregation, ascent and emplacement may lead to pluton-wide extreme heterogeneity in Sr isotopic ratios.  相似文献   

9.
深刻理解同位素在超高压变质及退变质过程中的地球化学行为对获得超高压变质岩准确并有明确意义的年龄值是非常重要的。对 Sm-Nd,Rb-Sr 同位素体系,只有变质矿物同位素体系达到平衡才能给出精确有意义的等时线年龄。研究表明,与副变质岩互层的细粒榴辉岩的高压变质矿物之间,或者强退变质岩石的退变质矿物之间,其 Nd,Sr 同位素可以达到平衡;然而高压变质矿物与退变质矿物之间 Nd,Sr 同位素不平衡。由于全岩样品总是含有数量不等的退变质矿物,因此石榴石 全岩 Sm-Nd 法或多硅白云母 全岩 Rh-Sr 法将有可能给出无地质意义的年龄。通常低温榴辉岩的高压变质矿物之间存在Nd 同位素不平衡。超高压变质岩多硅白云母所含过剩 Ar 主要源于榴辉岩原岩中角闪石在变质分解时释放出来的放射成因 Ar。因此,不含榴辉岩的花岗片麻岩多硅白云母基本不含过剩 Ar。对变质锆石成因的准确判断是正确理解锆石 U-Ph 年龄意义的关键。本文对不同成因锆石的判别标志及年龄意义做了总结,并指出将阴极发光图形,锆石痕量元素组成及矿物包裹体鉴定相结合是进行锆石成因鉴定的有效方法。高压变质或退变质增生锆石组成单一,是理想变质定年对象。然而变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,因而给出混合年龄。只有完全变质重结晶锆石才能给出准确变质时代。  相似文献   

10.
Rubidium-strontium isotopic study of intermediate-pressure granulites at Mt. Aloysius, central Australia reveals total rock isochrons that either record the metamorphism or predate it. The gneisses involved, typically quartz + feldspar + orthopyroxene + garnet granulites, occur in five lithological units which outline a simple fold structure. The distribution of isotopic ages in a 25 km2 area is tested using 74 samples collected in groups of 2 to 4 both along and across strike in each of the units. Two total rock isochron ages of 1200 and 1550 Myr occur, and both are found at different sites in one unit. Mineral ages are younger and independent of location, with feldspars giving 800 Myr and biotites 730 Myr. The 1200 Myr isochrons show the features of outcrop-scale Sr isotopic homogenisation and are taken to record the time of metamorphism. Contemporaneous regional depletion of U, commonly associated with granulite facies metamorphism, confirms the interpretation. The 1550 Myr isochrons describe entire lithological units and are best assigned to the supracrustal genesis of the rocks. The preservation of two ages indicates that isotopic equilibration of anhydrous total rocks is incomplete even within the granulite facies. Careful interpretation is required to assign geological meaning to granulite isochrons.  相似文献   

11.
Rb-Sr and U-Pb isotopic studies of the two contrasting granite types of the Daguzhai and Luobuli massifs in South China provide new constraints on the interpretation of isotopic age data for plutonic igneous rocks. A Rb-Sr internal isochron age of 146±7Ma for the Luobuli adamellite is interpreted to represent the age of magma crystallization, whereas the whole rock Rb- Sr isochron yields an older apparent age of 161±10Ma which is regarded as resulting from contamination processes affecting the petrogenesis of this adamellite. In the Daguzhai granite the marked scatter of whole- rock Rb-Sr data in isochron diagram is ascribed to the open system behavior of Rb during postmagmatic autometasomatism. Uniformity of initial87Sr /86Sr ratio in this granite is indicated in a plot of87Sr versus86Sr. The autometasomatism has also affected zircon U-Pb system, resulting in a spread of data along the concordia curve between 165 and 125Ma. This spread is regarded as indicating the duration of the autometasomatism.  相似文献   

12.
Hydrothermal convection initiated by emplacement of the gabbro-syenite complex of Abu Khruq into the Egyptian basement 89 Ma ago systematically altered the trace element and isotopic compositions of the syenites. The scale of Sr transport in migrating solutions was far larger than the scale of Sr isotopic equilibration within rocks. As a result, Sr exchange was heterogeneous in the syenites, an effect which can be observed on three different scales. Within grains of a single mineral species, heterogeneities are related to grain boundaries and microfractures through which fluids migrated. Among minerals within rock samples, heterogeneities are related to differences in susceptibility to Sr alteration. Among samples within a single unit, heterogeneous alteration is apparently related to differences in permeability close to fracture zones.During the early stages of alteration radiogenic Sr derived from the country rocks was added to the syenites, causing small net changes in concentration (5 ppm ave.). Some Rb-Sr mineral isochrons from single rock samples yield the emplacement age because isotopic equilibration of this added Sr sometimes occurred within rock specimens. However, regressions of the whole-rock Rb-Sr data yield apparent ages that are about 10 Ma too old. Later stage alteration involved larger changes in whole-rock Sr concentration (45 ppm ave.) but had little further effect on the isotopic relationships because the Sr was derived from cogenetic gabbros rather than the country rocks.Alterations of Rb, Sr, and Sr isotopic compositions are not well correlated with changes in 18O/16O ratio because mineralogy played an important role in decoupling trace element and oxygen isotopic alteration. In general, the absence of such correlations for whole-rock data is not diagnostic of rocks with unaltered trace element and isotopic compositions. Mineral-scale Sr isotopic heterogeneities associated with grain boundaries and microfractures may be the most unambiguous evidence of trace element mobility.Deceased on 9/81  相似文献   

13.
中国中部蓝片岩的形成时代   总被引:32,自引:1,他引:32       下载免费PDF全文
报道了皖中张八岭群中蓝片岩的40Ar/39Ar年龄为245.1±0.5Ma。该年龄与扬子陆块北缘的其它高压变质岩及高压变质矿物的年龄一致,说明中国中部蓝片岩带与榴辉岩带一样形成于三叠纪。动力学分析表明,Sr同位素在干的高压变质过程中均一化尺度很小(<1m),因此该带含蓝片岩地层的元古代Rb-Sr全岩等时线年龄指示的是它经历的第1次区域变质时代,不是后来发生的高压变质时代。此外,还对榴辉岩K-Ar年龄与Sm-Nd年龄的矛盾问题进行了讨论。  相似文献   

14.
Absolute ages of granite magmatism, as well as of tungsten mineralization, are poorly constrained in the Mongolian Altai and adjacent areas. There are no reports focusing on special isotopic investigations of the tungsten deposits. For the deposits in the Achit nuur and the Zagaan-Shibetin tectonic zones, two concepts that are discussed in the literature assume Paleozoic or Mesozoic ages for mineralization and related granite magmatism. We report the first results of a combined Sm-Nd and Rb-Sr isotope investigation of rocks and vein minerals of the Ulaan uul tungsten deposit at Kyzyltau; the results suggest Paleozoic ages for vein mineralization and for albitization of the host granite. The Sm-Nd isotope system, and the structure of vein minerals used for isotopic dating, were only slightly affected by late alteration processes. Sm-Nd mineral isochrons for wolframite and fluorite from the veins define an age of 303 ± 17 Ma (MSWD = 1.8, εNd = +0.9 ± 0.2). The Rb-Sr isotope system of the vein-hosting granite was strongly influenced by alteration processes. The Rb-Sr whole-rock isochron (282.2 ± 2.4 Ma, Sri = 0.70667 ± 0.00032, MSWD = 0.53) is interpreted as a mixing line and the age so defined has no direct geological meaning. Nevertheless, using Rb-Sr model ages and data on the degree of alteration of the samples, an age somewhat below 316 Ma can be estimated for albitization of the vein-hosting granite. This age estimation is in good agreement with the Sm-Nd isochron age for the vein mineralization. High εNd values obtained for wolframite and fluorite from the ore veins indicate an important role for material derived from the upper mantle in the ore formation processes.  相似文献   

15.
The Bottle Lake Complex is a composite granitic batholith emplaced into Cambrian to Lower Devonian metasedimentary rocks. Both plutons (Whitney Cove and Passadumkeag River) are very coarse grained hornblende and biotite-bearing granites showing petrographic and geochemical reverse zonation. Two linear whole rock Rb/Sr isochrons on xenolith-free Whitney Cove and Passadumkeag River samples indicate ages of 379±5 m.y. and 381±4 m.y., respectively, in close agreement with published K-Ar ages for biotite from Whitney Cove of 377 m.y. and 379 m.y., and for hornblende 40Ar/39Ar determinations from Passadumkeag River which indicate an age of 378±4 m.y. The initial Sr isotopic ratio for Whitney Cove is 0.70553 and for Passadumkeag River is 0.70414. A whole-rock isochron on a suite of xenoliths from the Passadumkeag River granite indicates a whole rock Rb-Sr age of 496±14 m.y., with an initial Sr isotopic ratio of 0.70262.Two types of zircon exhibiting wide petrographic diversity are evident in variable proportions throughout the batholith. One of these types is preferentially found in a mafic xenolith and it is widely dispersed in the host granites forming discrete grains and probably as inclusions in the other type of zircon. U-Pb analyses of zircons give concordia intercept ages of 399±8 m.y. for Whitney Cove, 388±6 m.y. for Passadumkeag River, 415 m.y. for a mafic xenolith in Passadumkeag River, and 396±32 for combined Whitney Cove and Passadumkeag River granite. The zircons show a spread of up to 20 m.y. in the 207Pb/206Pb ages. Omitting the finest zircon fraction in the Passadumkeag River results in a concordia intercept age of 381±3 m.y., in better agreement with the whole-rock Rb-Sr and mineral K-Ar ages. For the Whitney Cove pluton, exclusion of the finest fraction does not bring the zircon age into agreement with the Rb-Sr data.Age estimates by the whole rock Rb-Sr, mineral K-Ar and Ar-Ar methods suggest that the crystallization age of the plutons is about 380 m.y., slightly younger than the U-Pb zircon intercept ages. A possible reason for this discrepancy is that the zircons contain inherited lead. Thus, zircon U-Pb ages might represent a mixture of newly developed zircon and older inherited zircon, whereas the Rb-Sr whole rock age (380 m.y.) reflects the time of crystallization, and the argon ages result from rapid cooling after emplacement.  相似文献   

16.
Models of garnet differential geochronology   总被引:3,自引:0,他引:3  
Rayleigh distillation models are developed to describe theoretical growth zoning of Lu, Hf, Rb, Sr, Sm, and Nd in typical garnet crystals from metapelites and metabasites. Effects of diffusion-limited transport within the matrix and intracrystalline diffusion are also considered qualitatively. Theoretical zoning profiles show strong depletions of Lu in garnet rims compared to cores, but virtually invariant Hf, Rb, Sr, Sm, and Nd profiles, generally consistent with natural profiles for Lu and Hf and previously published models. Theoretical isochron diagrams for Lu-Hf exhibit distinctive arcuate distributions and high MSWDs consistent both with Himalayan data, and with expectations that garnet growth durations exceed chronologic resolution by as much as an order of magnitude. Predicted isochron diagrams for Sm-Nd and Rb-Sr exhibit vertical arrays for garnet and high MSWDs that are generally lower than for Lu-Hf in metapelites. Inherent chronologic resolution for bulk separates is best for Lu-Hf in metapelites and Rb-Sr, but analytical considerations favor Rb-Sr or Sm-Nd for chronologic zoning studies. Diffusion-limited transport in the rock matrix strongly influences zoning profiles, but does not change the main trends on isochron diagrams. Intracrystalline diffusion will initially rotate Lu-Hf isochrons to steeper slopes, giving older apparent ages. The natural Himalayan data indicate growth of garnet in one rock from the Greater Himalayan Sequence at ∼34 Ma, consistent with previously measured monazite ages from the same rock. Data from another Himalayan rock suggest polymetamorphism that includes a Paleozoic component.  相似文献   

17.
Volcano-sedimentary series of the Upper Jurassic to the Lower Cretaceous are extensively developed in Zhejiang Province. But ages and stratigraphic correlation concerning these rocks have long been a controversial problem. Systematic sampling was made of volcanic rocks of the Laocun, Huangjian, Shouchang and Moshishan Formations in western Zhejiang considered thus far as the Late Jurassic. Isotopic age determinations show that U-Th-Pb zircon ages are approximately concordant with Rb-Sr isochron ages, whereas K-Ar biotite ages and K-Ar isochron ages are all slightly lower. It can therefore be established that the ages of volcanic rocks mentioned above range from 134±6 to 122±2 m.y., corresponding to the “transitional period” from Jurassic to Cretaceous. It can also be concluded that the rocks have not undergone apparent epigenetic metamorphism. The initial87Sr/86Sr ratio is about 0.7089–0.7121, on the basis of which it may be postulated that the volcanic magma seems to have originated from the upper mantle with contamination by sialic materials subsequent to differentiation. For age determinations of such acid volcanic rocks Rb-Sr isochron method is considered more suitable in view of its following advantages: the high reliability of results; wide applicability to different samples; smaller sample requirement and the possibility for further studies involving petrogenesis by use of initial87Sr/86Sr ratio.  相似文献   

18.
The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have Tdm ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have Tdm ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 ±0.08 and 2.20 ±0.20 Ga (∑2200Nd = −15.5), respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 ±100 Ma (∑2200Nd = −5.8 ±1.8).

The Sm-Nd, O and Rb-Sr isotopic systematics of these granitic rocks have been complicated to some degree by both crystallization and post-crystallization processes, and the age of the pegmatite and parts of the Harney Peak Granite complex remain uncertain. Processes that probably complicated the isotopic systematics of these rocks include derivation from heterogeneous source material, assimilation, mixing of REE between granite and country rock during crystallization via a fluid phase and post-crystallization mobility of Sr. The Nd isotopic compositions of the pegmatite and the Harney Peak Granite indicate that they were not derived primarily from the exposed metasedimentary rocks.  相似文献   


19.
Mineral and isotope studies were undertaken on migmatites from the Schwarzwald, Moldanubian zone of the Variscan belt. The aims of the study were to date the migmatite formation and to determine the processes involved in migmatization in order to evaluate their influence on isotopic resetting. Textural evidence and the comparison of mineral compositions from leucosomes and mesosomes of two centimetre-scale migmatite profiles, respectively, suggest that migmatitic textures and mineral assemblages were formed by metamorphic segregation (deformation-enhanced mass transport) rather than by partial melting (anatexis). The results of Rb-Sr thin-slab dating on these profiles indicate that Sr isotopes were not completely reset during migmatization. No true isochron ages, but ages of approximate isotopic homogenization were obtained on the thin slabs by calculating 87Sr/86Sr ratios back to various stages in their evolution. The coincidence of these Rb-Sr data with U-Pb ages of monazites from migmatites and non-migmatitic gneisses shows that gneisses and migmatites were formed during the same high-temperature event in the Carboniferous (330-335 Ma). The observation that high-temperature metamorphism failed to equilibrate Sr isotopes on the centimetre-scale imposes limitations on the use of conventional whole-rock isochron techniques in dating migmatites.  相似文献   

20.
李龙  郑永飞 《地质论评》2000,46(2):120-130
本文利用二元混合模型讨论了壳幔物质的不同混合环境对Rb-Sr等时线年龄的影响。一般情况下,混合作用将使岩体的同位素年龄变大;若地壳物质在混合之前经受过Rb丢失和(或)Sr获得事件,则等时线斜率的变化较大,可能得到很大的年龄和异常低的初始同位素比值,甚至斜率为负值。对一组分离的底辟小岩体而言,同一底辟岩体作矿物内部等时线能够得到结晶年龄,但用不同岩体的全岩得到的等时线则可能给出围岩年龄(条件是各底辟  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号