首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The fact that the cross-profile of the glacial valley could be well approximated by parabolas (Y = aXb, b = 2.0) is explained by the variation principle, assuming that the glacier erosion works towards minimizing thefriction between ice and bedrock. The variation principle proves that the ideal or fully-developed morphology of the glacial valley should be a catenary, the curve which a chain hanging from two fixed points forms. Maclaurin's series expansion of the catenary equation shows that a parabola is a very good approximation of the catenary; hence, the good approximation of the cross-profile by parabolas. Different catenaries are generated by changing the form ratio (depth/rim width) and are then approximated by Y = aXb by the method of last-squares. The b values obtained become only fractionally larger than 2.0 with invreasing form ratios of up to 1.0, indicating that b values would range, in practice, between 1.0 and about 2.0 Two types of trend in the relationship between b values and the form ratio were obtained from several glaciers. For one type the b value becomes larger with increasing form ratios, and for the other the opposite. The first type is called the Rocky Mountain model after its source of data and represents overdeepening of the glacial valley development. The second type is caalled the Patagonia-Antarctica model, representing a widening, instead of a deepening, process of development. These differences are attributed to the nature of the glaciers which produced these valleys, i.e. alpine glaciers and continental ice sheets.  相似文献   

2.
Threlkeld Knotts (c. 500 m above sea level) in the English Lake District has hitherto been considered to be a glacially‐modified intrusion of microgranite. However, its surface features are incompatible with glacial modification; neither can these nor the subsurface structures revealed by ground‐penetrating radar (GPR) be explained by post‐glacial subaerial processes acting on a glacially‐modified microgranite intrusion. Here we re‐interpret Threlkeld Knotts as a very large post‐glacial landslide involving the microgranite, with an estimated volume of about 4 × 107 m3. This interpretation is tested against published and recent information on the geology of the site, the glacial geomorphic history of the area and newly‐acquired GPR data. More than 60 large post‐Last Glacial Maximum (LGM) rock–slope failures have significantly modified the glaciated landscape of the Lake District; this is one of the largest. Recognition of this major landslide deposit in such a well‐studied environment highlights the need to continuously re‐examine landscapes in the light of increasing knowledge of geomorphic processes and with available technology in currently active or de‐glaciating environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
冰川均衡调整(GIA)的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
冰川均衡调整对固体地球物理学、大地测量学、地貌学、海洋学、冰川学、气候变化、水资源、天文学和考古学等学科具有重要的意义,通过其综述性介绍,以吸引我国地学界的注意和兴趣.本文结合作者和国内外研究成果,全方位地阐述了冰川均衡调整研究的完整内涵,首先给出了冰川均衡调整的完整概念,探讨了冰川均衡调整对冰后地壳运动、全球海平面变化、地球重力场、地球旋转运动和应力状态的影响,再分析了冰川均衡调整研究的科学目标和冰川均衡调整研究的历史与现状,最后指出了冰川均衡调整研究的未来发展方向.  相似文献   

4.
Solute and runoff fluxes from two adjacent alpine streams (one glacial and one non‐glacial) were investigated to determine how the inorganic solute chemistry of runoff responded to seasonal and interannual changes in runoff sources and volume, and to differences in physical catchment properties. Intercatchment differences in solute composition were primarily controlled by differences in catchment geology and the presence of soils, whereas differences in total solute fluxes were largely dependent on specific discharge. The glacial stream catchment had higher chemical denudation rates due to the high rates of flushing (higher specific discharge). The non‐glacial Bow River had higher overall concentrations of solutes despite the greater prevalence of more resistant lithologies in this catchment. This is likely the result of both longer average water–rock contact times, and a greater supply of protons from organic soils and/or pyrite oxidation. Increases in snowpack depth/snowmelt runoff reduced the retention of nitrate in the Bow River catchment (i.e. increased nitrate export), probably by reducing net biological uptake, or by reducing the proportion of runoff that had contact with biologically active soil horizons that tend to remove nitrate. The two streams exhibited opposite solute flux responses to climate perturbations over three melt seasons (1998, 1999, and 2000). The 1998 El Niño event resulted in an unusually thin winter snowpack, and increased runoff and solute fluxes from the glacial catchment, but decreased fluxes from the Bow River catchment. Solute fluxes in the Bow River increased proportionally to discharge, indicating that increased snowmelt runoff in this catchment resulted in a proportional increase in weathering rates. In contrast, the proportional variation in solute flux in the glacial stream was only ∼70–80% of the variation in water flux. This suggests that increased ablation of glacier ice and the development of subglacial channels during the 1998 El Niño year apparently reduced the average water–rock contact time in the glacial catchment relative to seasons when the subglacial drainage system was primarily distributed in character. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
We provide an improvement to the Hirano–Aniya catenary model for the cross‐profile morphology of a glacial valley. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The Pleistocene glaciations left a distinct topographic footprint in mountain ranges worldwide. The geometric signature of glacial topography has been quantified in various ways, but the temporal development of landscape metrics has not been traced in a landscape evolution model so far. However, such information is needed to interpret the degree of glacial imprint in terms of the integrated signal of temporal and spatial variations in erosion as a function of glacial occupation time. We apply a surface process model for cold-climate conditions to an initially fluvial mountain range. By exploring evolving topographic patterns in model time series, we determine locations where topographic changes reach a maximum and where the initial landscape persists. The signal of glacial erosion, expressed by the overdeepening of valleys and the steepening of valley flanks, develops first at the glacier front and migrates upstream with ongoing glacial erosion. This leads to an increase of mean channel slope and its variance. Above steep flanks and head-walls, however, the observed mean channel slope remains similar to the mean channel slope of the initial fluvial topography. This leads to a characteristic turning point in the channel slope–elevation distribution above the equilibrium line altitude, where a transition from increasing to decreasing channel slope with elevation occurs. We identify this turning point and a high channel slope variance as diagnostic features to quantify glacial imprint. Such features are abundant in glacially imprinted mid-latitude mountain ranges such as the Eastern Alps. By analysing differently glaciated parts of the mountain range, we observe a decreasing clarity of this diagnostic morphometric property with decreasing glacial occupation. However, catchments of the unglaciated eastern fringe of the Alps also feature turning points in their channel slope–elevation distributions, but in contrast to the glaciated domain, the variance of channel slope is small at all elevation levels.  相似文献   

7.
Nearly 200 analyses of meltwaters, ice and snow from three alpine glacial sites in carbonate terrain are summarized and discussed in terms of sources of solutes and kinetic controls on the progress of weathering reactions. Most data derive from the Swiss Glacier de Tsanfleuron which is based on Cretaceous and Tertiary pure and impure limestones. Two other sites (Marmolada, Italian Dolomites and the Saskatchewan Glacier, Alberta) are based on a mixed calcitic-dolomitic substrate. Most solutes originate from carbonate dissolution; moreover, where pyrite is present its oxidation supplies significant sulphate and forces more dissolution of carbonate. The ratios Sr2+/Ca2+ and Mg2+/Ca2+ are much higher in Tsanfleuron melt-waters than local bedrock, a phenomenon that can be reproduced in the laboratory at small percentages of dissolution. These anomalous ratios are attributed to incongruent dissolution of traces of the metastable carbonates Mg-calcite and aragonite. These phases also provide Na+ to solution. K+ is argued to originate mainly by ion-exchange on clays with solute Ca2+. Quartz and very minor feldspar dissolution are also inferred. Locally enhanced input from atmospheric sources is recognized by high Cl? and associated Na+. The progress of weathering reactions has been evaluated by the trends in the data, computer modelling and some simple laboratory experiments. The most dilute samples show a trend towards removal of CO2 to low partial pressures (c. 10?5.5 atmospheres), reflecting initially rapid carbonate dissolution and relatively slow dissolution of gaseous CO2. Later addition of atmospheric CO2 or acid from pyrite oxidation allows further carbonate dissolution, but solutions show a wide range of saturations, and CO2 pressures as high as 10?2.2 where pyrite oxidation is important. In a carbonate terrain, measurement of electroconductivity (corrected to 25°C) and alkalinity in the field allows the following preliminary deductions (where meq stands for milliequivalents): where S is the minimum meq(Ca2+ + Mg2+) produced by simple dissolution of carbonate unconnected with pyrite oxidation. As with any proxy method, these deductions do not remove the need for chemical analysis of waters in a given study area.  相似文献   

8.
Recent models of chemical weathering in alpine glacial meltwaters suggest that sulphide oxidation is a major source of solute in the distributed component of the subglacial hydrological system. This reaction requires O2, and may lower dissolved oxygen levels to below saturation with respect to the atmosphere. This should result in an inverse association between SO72- and dissolved oxygen saturation. However, measurements of O2 saturation in bulk meltwaters draining the Haut Glacier d'Arolla, Switzerland, show that there is a positive association between SO42- and O2 saturation. The O2 content of glacial meltwaters depends on the initial content of snow and icemelt, which may be controlled by the rate of melting, and the kinetic balance between O2 losses (e.g. sulphide oxidation, microbial respiration) and gains (e.g. diffusion of O2 into solution).  相似文献   

9.
Landsat images reveal a previously unsuspected large-scale pattern of streamlining within drift that is assumed to reflect former phases of ice flow. Such a glacial grain can be regarded as a landform assemblage comprised of a number of components. Drumlins and megaflutes form part of the pattern, but in addition there are two previously undocumented ice-moulded landform elements: streamlined lineations of much greater proportions, referred to as mega-scale glacial lineations, and a distinctive cross-cutting topology within the grain. The ice-moulded landform assemblage is described and illustrated with reference to examples from Canada. Possible modes of genesis of such landforms are discussed and their glaciological implications outlined. The discovery of this pattern indicates the pervasive nature of subglacial deformation of sediment, and demands a radical re-interpretation of ice sheet dynamics.  相似文献   

10.
The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.  相似文献   

11.
The glacial cirques of a mountainous region usually have comparable size. Cirque widths between 400 m and 800 m are relatively common, whereas very large and very small cirques are infrequent. Although the presence of an upper limit is probably a result of the limited time available since the epoch of formation, the absence of very small cirques is more problematic. Simple statistical arguments suggest that this feature can be explained if the formation of cirques is very selective and localized in relatively small areas of the landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Based on numerical experiments undertaken with nine climate models, the glacier equilibrium line altitudes(ELAs)in western China during the last glacial maximum(LGM) are investigated to deepen our understanding of the surface environment on the Tibetan Plateau. Relative to the preindustrial period, the summer surface air temperatures decrease by 4–8°C while the annual precipitation decreases by an average of 25% across the Tibetan Plateau during the LGM. Under the joint effects of reductions in summer temperature and annual precipitation, the LGM ELAs in western China are lowered by magnitudes that vary with regions. The ELAs in the southern margin and northwestern Tibetan Plateau decline by approximately 1100 m; the central hinterland, by 650–800 m; and the eastern part, by 550–800 m, with a downward trend from southwest to northeast. The reduction in ELAs is no more than 650 m in the Tian Shan Mountains within China and approximately 500–600 m in the Qilian Mountains and Altai Mountains. The high-resolution models to reproduce the low values of no more than 500 m in ELA reductions in the central Tibetan Plateau, which are consistent with the proxy records from glacier remains. The accumulation zones of the Tibetan Plateau glaciers are mainly located in the marginal mountains during the LGM and have areas 2–5 times larger than those of the modern glaciers but still do not reach the central part.  相似文献   

13.
Previously reported low luminescence of basal glacial sediment has raised the possibility that processes operating at the ice–bedrock interface have the potential to reset (or ‘bleach’) natural luminescence signals (Swift et al., 2011). This finding indicates that certain types of glacial sediment (for example, sub-glacial diamicts) might be amenable to dating using luminescence-based techniques. Using a purpose-built ring-shear apparatus situated in a light-controlled environment, we have investigated the potential for mineral grains to be reset when subjected to conditions similar to those experienced by sediment that has undergone transport at the ice–bedrock interface. Reported here are the preliminary results of an initial experiment that used medium quartz sand with a naturally-acquired palaeodose of ∼4.3 Gy that had been obtained from a relict dune system. Incremental sampling during the shearing experiment and measurements were made to track changes in the luminescence properties of the sand as strain/shearing increased. The results indicate that increased strain/shearing resulted in an increase in the number of zero-dose grains and evolution of the De distribution from unimodal to multimodal. In light of the very much longer shearing distances that sub-glacial sediment would endure in nature, these results would appear to suggest that geomechanical processes at the ice–bed interface of glaciers and ice sheets may be a viable mechanism for resetting sediment.  相似文献   

14.
S. Jobard  M. Dzikowski   《Journal of Hydrology》2006,330(3-4):663-671
Proglacial discharge is controlled by the geometry of the glacial drainage network and by meltwater processes. The glacial drainage systems of some alpine glaciers have been characterised using a model based on a proglacial discharge analysis. In this paper, we apply high frequency systemic analysis to data collected from the Baounet Glacier (French Alps) during two successive ablation seasons. Our approach is based on an analysis of the evolution of daily recession curves during the ablation period. The observed data are fitted by a single β-coefficient dependant recession law. Changes in β are compared to variations in the daily discharge amplitude and the time lag between air temperature and proglacial discharge. The changes in the β values do not appear to be related to changes in the time lag and the amplitude of the daily discharge. There were significant variations in the β-coefficient during the two ablation periods studied here even if there was no time lag or the daily discharge amplitude change. High values of β correspond to high drainage velocities; therefore increases in β values can be used as an indicator of the evolution of the glacier’s internal drainage network.  相似文献   

15.
This study quantifies and ranks variables of significance to predict mean values of Secchi depth in small glacial lakes. The work is based on a new, extensive set of data from 88 Swedish lakes and their catchments. Several empirical models based on catchment and lake morphometric parameters are presented. These empirical models can only be used to predict Secchi depth for lakes of the same type, and the models based on geological map parameters can evidently not be used for time-dependent and site typical predictions of Secchi depth. However, many of the principles behind the results ought to be valid for lakes in general. Various hypotheses concerning the factors regulating the variability in mean Secchi depth among lakes are formulated and tested. The most important variables are: Lake colour (expressing allogenic input of different types of humic materials), total-P and lake temperature (measures of production of autogenic materials). The most important map parameters are: The mean depth (linked to resuspension and lake morphometry) and the ratio between the drainage area and lake area (expressing the linkage between catchment and lake). The predictability of some of the models cannot be markedly improved by accounting for the distribution of the characteristics in the drainage area (using the drainage area zonation technique). The variability in mean Secchi depth from other factors, such as precipitation and anthropogenic load, may then be quantitatively differentiated from the impact of these geological factors, which can statistically explain 68% of the variability in Secchi depth among these lakes. The model based on map parameters can also be used to estimate natural, preindustrial reference values of Secchi depth.  相似文献   

16.
The main landforms within the glacially scoured Precambrian rocks of the Swedish west coast are closely connected to the principal structural pattern and have lately been explained as mainly a result of etch processes, probably during the Mesozoic and with a possible second period of etching during the Neogene. To explore the effect of multiple glacial erosion on the rock surfaces, an island with two different lithologies and with striae from different directions was selected for a detailed study, focusing on the shape of roches moutonnées. Air‐photo interpretation of bedrock lineaments and roches moutonnées combined with detailed field mapping and striae measurements are used to interpret the structural and lithological control on the resulting shape. The study reveals a significant difference in shape between roches moutonnées in augen‐granite and orthogneiss. Low elongated and streamlined roches moutonnées occur in the gneiss area, striated by a Late Weichselian ice flow from the NE. This ice flow is subparallel with both the local dominant trend of topographically well‐expressed joints and the schistosity of the gneiss. Frequently, there are no signs of quarrying on the lee‐sides of the gneiss roches moutonnées and hence they resemble the shape of whalebacks, or ruwares, as typically associated with the exposed basal weathering surface found in tropical areas. The granite roches moutonnées were formed by an older ice flow from the ESE, which closely followed the etched WNW–ESE joint system of the granite. Late Weichselian ice flow from the NE caused only minor changes of the landforms. On the contrary, marks of the early ESE ice flow are poorly preserved in the gneiss area, where it probably never had any large effect as the flow was perpendicular to both schistosity and structures and, accordingly, also to the pre‐glacial relief. The study demonstrates that coincidence between ice flow direction and pre‐glacially etched structures is most likely to determine the effects of glacial erosion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Arsenic in glacial aquifers: sources and geochemical controls   总被引:1,自引:0,他引:1  
A total of 176 wells in sand-and-gravel glacial aquifers in central Illinois were sampled for arsenic (As) and other chemical parameters. The results were combined with archived and published data from several hundred well samples to determine potential sources of As and the potential geochemical controls on its solubility and mobility. There was considerable spatial variability in the As concentrations. High concentrations were confined to areas smaller than 1 km in diameter. Arsenic and well depth were uncorrelated. Arsenic solubility appeared to be controlled by oxidation-reduction (redox) conditions, especially the presence of organic matter. Geochemical conditions in the aquifers are typically reducing, but only in the most reducing water does As accumulate in solution. In wells in which total organic carbon (TOC) was below 2 mg/L and sulfate (SO4(2-)) was present, As concentrations were low or below the detection limit (0.5 microg/L). Arsenic concentrations >10 microg/L were almost always found in wells where TOC was >2 mg/L and SO4(2-) was absent or at low concentrations, indicating post-SO4 (2-)reducing conditions. Iron (Fe) is common in the aquifer sediments, and Fe oxide reduction appears to be occurring throughout the aquifers. Arsenic is likely released from the solid phase as Fe oxide is reduced.  相似文献   

18.
Data from six monitoring stations were combined with a soil‐water dynamics model (HYDRUS 1D) to achieve physically‐based estimates of shallow water‐table recharge in representative hydropedological settings of the glaciated midwestern U.S.A. Calibration involved inverse modeling that yielded optimized hydraulic parameters. Root mean square errors for modeled versus measured soil moisture contents were generally within 3% for all soil layers at the six study sites. The optimized models also accurately simulated recharge values that corresponded to observed water‐table fluctuations. Optimized parameter values were consistent with estimates from a pedotransfer function, lab analyses, and field experiments. Forward modeling indicated that shallow water‐table recharge in mid‐continent glacial settings is approximately 35% of precipitation, but interannual and monthly variability is significant. Soil parent materials and horizon characteristics influence recharge primarily through their control on Ks with clay‐rich till parent materials producing values as low as 16% and coarse‐grained outwash parent materials producing values as high as 58% of precipitation. During the three‐year study period, distinct seasonality of recharge was observed with most recharge occurring in the winter (seasonal mean of all sites was 66% of precipitation) and lesser but interannually stable amounts in the spring (44%), summer (13%), and autumn (16%). This research underscores the importance of incorporating pedological information into models of soil‐water dynamics and groundwater recharge. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

19.
In order to extend our knowledge of glacial relief production in mountainous areas new methods are required for landscape reconstructions on a temporal resolution of a glacial cycle and a spatial resolution that includes the most important terrain components. A generic data set and a 50 m resolution digital elevation model over a study area in northern Sweden and Norway (the present day landscape data set) were employed to portray spatial patterns of erosion by reconstructing the landscape over successive cycles of glacial erosion. A maximum‐value geographic information system (GIS) filtering technique using variable neighbourhoods was applied such that existing highpoints in the landscape were used as erosional anchor points for the reconstruction of past landscape topography. An inherent assumption, therefore, is that the highest surfaces have experienced insignificant down‐wearing over the Quaternary. Over multiple reconstruction cycles, proceeding backwards in time, the highest summits increase in area, valleys become shallower, and the valley pattern becomes increasingly simplified as large valleys become in‐filled from the sides. The sum of these changes reduces relief. The pattern of glacial erosion, which is to 60% correlated to slope angle and to 70% correlated to relative relief, is characterized by (i) an abrupt erosional boundary below preserved summit areas, (ii) enhanced erosion in narrow valleys, (iii) restricted erosion of smooth areas, independently of elevation, (iv) eradication of small‐scale irregularities, (v) restricted erosion on isolated hills in low‐relief terrain, and (vi) a valley widening independent of valley directions. The method outlined in this paper shows how basic GIS filtering techniques can mimic some of the observed patterns of glacial erosion and thereby help deduce the key controls on the processes that govern large‐scale landscape evolution beneath ice sheets. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A sequence of glacial and alluvial deposits overlying the Cretaceous Chalk in Eastern England was characterised using two geophysical techniques: electrical resistivity imaging and electromagnetic (EM) induction. Extensive geological data were available from trenching and boreholes. Synthetic modelling of the electrical resistivity imaging technique was undertaken to identify its limitations and to optimise survey design. The EM induction method provided a quick and cost-effective reconnaissance technique for identifying large-scale lateral variation in lithology, and for siting resistivity profiles and further boreholes. The resistivity imaging technique provided detailed information on the vertical continuity of permeable units, and was able to identify permeable pathways through the sequence. Certain limitations in detecting thin sand or gravel layers underlying electrically conductive clay were seen in both the synthetic and field data. Nevertheless, the study shows that knowledge of these limitations allows interpretation for the purpose of groundwater vulnerability assessment, given that an appropriate amount of invasive investigation has been conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号