首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Thirteen new meteorites and three meteorite inclusions have been analyzed. Their results have been incorporated into earlier published data for a comprehensive reference to all analyzed meteorites at the Smithsonian Institution. The six tables facilitate a convenient overlook of meteorite data. Table 1 presents an alphabetical list of analyzed meteorites, Table 2 chemical analyses of stony meteorites, Table 3 chemical analyses of iron meteorites, Table 4 elemental composition of stony meteorites, Table 5 average composition of carbonaceous chondrites and achondrites (falls and finds), and Table 6 presents average composition of H, L, LL, and Antarctic chondrites (falls and finds). The tables are available online at the journal's Web site http:meteoritics.org .  相似文献   

2.
Abstract— Re and Os abundances and 187Os/186Os isotopic ratios in 12 iron meteorites of various groups and five stony iron meteorites have been determined by an inductively coupled plasma mass spectrometry (ICP-MS). The series of iron meteorites studied have Re and Os concentrations ranging from 0.004 to 3.3 ppm and 0.03 to 41 ppm, respectively. The 187Re/186Os ratios in these meteorites fall between 3.0 and 6.1 and the 187Os/186Os between 1.0 and 1.2, giving an initial 187Os/186Os isotopic ratio of 0.790 and a Re-Os age of iron meteorites of 4.30 ± 0.28 Ga when employing the decay constant of 1.64 × 10?11 yr?1. The observed Re-Os age for iron meteorites appears somewhat younger than that for chondrites. The resultant younger age might be due either to a very slow cooling of the parental planetesimals or due to a secondary “shock” event. However, for definite conclusions about the Re-Os age, higher precisions of the Re and Os isotopic measurements and of the decay constant of 187Re are required. Furthermore, the clear elucidation of the mechanisms for the fractionation of the Re/Os abundance ratios are related to the understanding of the meaning of the Re-Os age. The Re and Os abundances in pallasite stony iron meteorites are extremely low compared with those for most iron meteorites. On the other hand, the Re and Os abundances in mesosiderite stony iron meteorites show values comparable with those observed in most iron meteorites. The difference in Re and Os abundances in pallasite and mesosiderite stony iron meteorites strongly suggests that these stony iron meteorites are different in origin or history of chemical evolution. Re and Os abundances in the series of iron and stony iron meteorites were found to have a wide variation covering nearly four orders of magnitude, with a very high correlation coefficient (0.996), and a slope very slightly less than unity. The regression line observed here covers various groups of iron meteorites, stony iron meteorites and also chondrites. Masuda and Hirata (1991) suggested the possible direct mixing process of particles of most refractory metallic elements with gaseous clouds of less refractory matrix elements, since the Re and Os were predicted theoretically to be the first elements to condense as a solid phase from the high temperature solar nebula. The aims of this paper are to present a reliable technique for the Re-Os chronology and to study the cosmochemical sequences of the meteoritic metals.  相似文献   

3.
Abstract— Meteoritical Bulletin No. 82 lists information for 974 new meteorites, including 521 finds from Antarctica, 401 finds from the Sahara, 21 finds from the Nullarbor region of Australia, and 7 falls (Ban Rong Du, Burnwell, Fermo, Jalanash, Juancheng, Monahans (1998), and Silao). Many rare types of meteorites are reported: counting pairing groups as one, these include one CR chondrite, two CK chondrites, two CO chondrites, four CV chondrites, one CH chondrite or Bencubbin-like, six C2 (unclassified) chondrites, two EH chondrites, two EL chondrites, three R chondrites, thirty unequilibrated ordinary chondrites, one un-grouped chondrite, three eucrites, six howardites, one diogenite, eleven ureilites, nine iron meteorites, one mesosiderite, two brachinites, one lodranite, one winonaite, and two lunar meteorites (Dar al Gani 400 and EET 96008). All italicized abbreviations refer to addresses tabulated at the end of this document.  相似文献   

4.
Abstract— Siderophile elements have been used to constrain projectile compositions in terrestrial and lunar impact melt rocks. To obtain a better knowledge of compositional differences between potential chondritic projectile types, meteorite analyses of the elements Ru, Rh, Pd, Os, Ir, Pt, Cr, Co, Ni, and Au were gathered into a database. The presented compilation comprises 806 analyses of 278 chondrites including new ICP‐MS analyses of Allende and two ordinary chondrites. Each data set was evaluated by comparing element ratios of meteorites from the same chondrite group. Characteristic element abundances and ratios were determined for each group. Features observed in the element abundance patterns can be linked directly to the presence of certain components, such as the abundance of refractory elements Os, Ir, and Ru correlating with the occurrence of refractory inclusions in CV, CO, CK, and CM chondrites. The refined characteristic element ratios appear to be representative not only for meteorites, but also for related asteroidal bodies. Chondrite element ratios were compared to previously published values from impact melt rocks of the Popigai and Morokweng impact structures confirming that an identification of the specific type of projectile (L and LL chondrite, respectively) is possible. The assessment for Morokweng is supported by the recent discovery of an LL chondrite fragment in the impact melt rocks. Ultimately, the database provides valuable information for understanding processes in the solar nebula as they are recorded in chondrites. A new type of complementarity between element patterns of CK and EH chondrites is suggested to be the result of condensation, redox, and transportation processes in the solar nebula.  相似文献   

5.
Abstract— A catalogue of a collection of meteorites is presented. The catalogue is complete through 1995 December. It includes 206 stony meteorites, 47 iron meteorites, 18 stony-iron meteorites, and 30 tektites, natural glasses, etc.  相似文献   

6.
Identification and characterization of small extraterrestrial samples, such as small Antarctic meteorites <~1 cm, require the development of convenient laboratory‐based nondestructive analytical techniques using X‐ray diffraction (XRD). We explore the characterization criteria using an X‐ray diffractometer with a Gandolfi attachment using sub‐mm small fragments and powder aggregates for various kinds of stony meteorites and develop a new analytical technique. We primarily focus on olivine and pyroxene because they are the most abundant and important minerals for stony meteorite classification. A new calibration is performed to estimate the FeO content of the olivine in unequilibrated ordinary chondrites, which is useful for determining the meteorite chemical group irrespective of powder aggregate diameter but dependent on fragment grain diameter. This is because X‐ray intensity absorption is more effective for grains than for powders. Clinoenstatite (Cen) and orthoenstatite (Oen) were distinguished using the presence or absence of the isolated Oen 511 index peak. The method is also applied to other stony meteorites including carbonaceous chondrites and achondrites. The XRD results are consistent with studies based on polished sections involving textural observations by scanning microscope and chemical compositions of the constituent minerals. The new measurement technique presented here is convenient because of its use in air by the laboratory‐based X‐ray diffractometer, which makes it useful for the initial analyses of restricted extraterrestrial sample characterization.  相似文献   

7.
CM carbonaceous chondrites can be used to constrain the abundance and H isotopic composition of water and OH in C-complex asteroids. Previous measurements of the water/OH content of the CMs are at the higher end of the compositional range of asteroids as determined by remote sensing. One possible explanation is that the indigenous water/OH content of meteorites has been overestimated due to contamination during their time on Earth. Here we have sought to better understand the magnitude and rate of terrestrial contamination through quantifying the concentration and H isotopic composition of telluric and indigenous water in CM falls by stepwise pyrolysis. These measurements have been integrated with published pyrolysis data from CM falls and finds. Once exposed to Earth's atmosphere CM falls are contaminated rapidly, with some acquiring weight percent concentrations of water within days. The amount of water added does not progressively increase with time because CM falls have a similar range of adsorbed water contents to finds. Instead, the petrologic types of CMs strongly influence the amount of terrestrial water that they can acquire. This relationship is probably controlled by mineralogical and/or petrophysical properties of the meteorites that affect their hygroscopicity. Irrespective of the quantity of water that a sample adsorbs or its terrestrial age, there is minimal exchange of H in indigenous phyllosilicates with the terrestrial environment. The falls and finds discussed here contain 1.9–10.5 wt% indigenous water (average 7.0 wt%) that is consistent with recent measurements of C-complex asteroids including Bennu.  相似文献   

8.
9.
The chemical effects of terrestrial alteration, with a particular focus on lithophile trace elements, were studied for a set of H chondrites displaying various degrees of weathering from fresh falls to altered finds collected from hot deserts. According to their trace element distributions, a considerable fraction of rare earth elements (REEs), Th, and U resides within cracks observed in weathered meteorite specimens. These cracks appear to accumulate unbound REEs locally accompanied by Th and U relative to the major element abundances, especially P and Si. The deposition of Ce is observed in cracks in the case of most of the weathered samples. Trace element maps visually confirm the accumulation of these elements in such cracks, as previously inferred based on chemical leaching experiments. Because the positive Ce anomalies and unbound REE depositions in cracks occur in all weathered samples studied here while none of such features are observed in less altered samples including falls (except for altered fall sample Nuevo Mercurio), these features are interpreted to have been caused by terrestrial weathering following chemical leaching. However, the overall effects on the bulk chemical composition remain limited as the data for all Antarctic meteorites studied in this work (except for heavily weathered sample A 09516, H6) are in good agreement with published data for unaltered meteorites.  相似文献   

10.
With the exception of a distinctive olivine-bronzite chondrite recognized by H. H. Nininger: “Ness County (1938)”, most of the numerous stony meteorites found in Ness County, Kansas, have been lumped together under the designation “Ness County (1894)”. It is the purpose of this paper to show that at least three separate falls are covered by this name  相似文献   

11.
Abstract— We report here new analyses of S and Se in carbonaceous chondrites (2 CIs, 11 CMs, 6 CO3s, 7 CV3s, 2 C4s, 4 CRs, and 1 CH), 2 rumurutiites, ordinary chondrites (2 Hs, 2 Ls, and 1 LL), 3 anomalous chondrites, 3 acapulcoites, 3 lodranites, and in silicate inclusions of the Landes IAB iron meteorite. To avoid problems from inhomogeneous distribution of sulfides, the same samples that had been analysed for Se by INAA were analysed for S using a Leybold Heraeus Carbon and Sulfur Analyser (CSA 2002). With the measured CI contents of 5.41% S and 21.4 ppm Se a CI S/Se ratio of 2540 is obtained. A nearly identical S/Se ratio of 2560 ± 150 is found for carbonaceous chondrites (average of falls). The average ratio of all meteorite falls analysed in this study was 2500 ± 270. These data suggest that the new S content of Orgueil with 5.41% provides a reliable estimate for the average Solar System. The new solar system abundance of S of 4.62 × 105 (atoms/106 Si) is in good agreement with the solar photospheric abundance of 7.21 (log (a(H)) = E12) (Anders and Grevesse, 1989). Among the 50 analysed meteorites, 24 were finds from hot (Australia, Africa) and cold (Antarctica) deserts. Weathering effects in the carbonaceous chondrites and in one lodranite from the hot deserts resulted in losses of S, Se, Na and occasionally Ni. Sulfur is apparently more affected by weathering than Se. No losses were observed in ordinary chondrite finds and in meteorites collected in the Antarctica, except for the obvious loss of Na in the CM-chondrite Y 74662. The low S-content of 0.096% in Gibson, a lodranite, is probably not representative of this group of meteorites. Gibson is a find from the Australian desert and has lost S and also Se by weathering. Two other lodranites, finds from Antarctica, have about 2% S.  相似文献   

12.
The Flux of Lunar Meteorites onto the Earth   总被引:1,自引:0,他引:1  
Numerous new finds of lunar meteorites in Oman allow detailed constraints to be obtained on the intensity of the transfer of lunar matter to the Earth. Our estimates show that the annual flux of lunar meteorites in the mass interval from 10 to 1000 g to the entire Earth's surface should not be less than several tenths of a kilogram and is more likely equal to tens or even a few hundred kilograms, i.e., a few percent of the total meteorite flux. This corresponds to several hundred or few thousand falls of lunar meteorites on all of Earth per year. Even small impact events, which produce smaller than craters on the Moon smaller than 10 km in diameter, are capable of transferring lunar matter to the Earth. In this case, the Earth may capture between 10 to 100% of the mass of high-velocity crater ejecta leaving the Moon. Our estimates for the lunar flux imply rather optimistic prospects for the discovery of new lunar meteorites and, consequently, for the analyses of the lunar crust composition. However, the meteorite-driven flux of lunar matter did not play any significant role in the formation of the material composition of the Earth's crust, even during the stage of intense meteorite bombardment.  相似文献   

13.
We describe the geological, morphological, and climatic settings of two new meteorite collections from Atacama (Chile). The “El Médano collection” was recovered by systematic on‐foot search in El Médano and Caleta el Cobre dense collection areas and is composed of 213 meteorites before pairing, 142 after pairing. The “private collection” has been recovered by car by three private hunters and consists of 213 meteorites. Similar to other hot desert finds, and contrary to the falls and Antarctica finds, both collections show an overabundance of H chondrites. A recovery density can be calculated only for the El Médano collection and gives 251 and 168 meteorites larger than 10 g km?2, before and after pairing, respectively. It is by far the densest collection area described in hot deserts. The Atacama Desert is known to have been hyperarid for a long period of time and, based on cosmic‐ray exposure ages on the order of 1–10 Ma, to have been stable over a period of time of several million years. Such a high meteorite concentration might be explained invoking either a yet unclear concentration mechanism (possibly related to downslope creeping) or a previously underestimated meteorite flux in previous studies or an average terrestrial age over 2 Myr. This last hypothesis is supported by the high weathering grade of meteorites and by the common terrestrial fragmentation (with fragments scattered over a few meters) of recovered meteorites.  相似文献   

14.
To improve the labelling value of meteoritic names, new meteorites should be assigned geographical names which are not used for other meteorites, which are simple, and, if possible, of mnemonic value. A Committee on Meteoritic Nomenclature should be established to supervise the assignment of new meteorite names, and to assist in the work necessary to confirm that new meteorite finds are not paired with meteorites which were previously cataloged.  相似文献   

15.
Abstract On the basis of reported optical measurements of iron and stony meteorites, upper and lower limits for solar absorptance and hemispherical emittance of the surfaces of meteoroids have been established. Temperatures of three classes of meteoroids, none larger than approximately 10 meters in radius, have been calculated for various orbits and a/e ratios. These classes are light chondrites, dark chondrites and the irons. Temperatures for a meteoroid in a Mercury orbit range from 100° C for a light chondrite to 400° C for an iron.  相似文献   

16.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

17.
Two new large iron meteorites, weighing 840 kg and 800 kg respectively, have been recovered from the Nullarbor Plain in the vicinity of the original Mundrabilla meteorite site, and are now at the Western Australian Museum in Perth. Numerous small knucklebone-shaped irons were also found at Tookana Rock Hole in the vicinity of Eucla. X-ray fluorescence spectrometry of these meteorites confirms that the additional finds are members of the Mundrabilla meteorite shower.  相似文献   

18.
A sample of Campo del Cielo with any other name would have the same composition. During the last three decades, our instrumental neutron activation analyses (INAA) of many supposedly new iron meteorites have shown an anomalously large fraction to have compositions within the compositional field of the IAB‐MG iron Campo del Cielo. A plot of Ir versus Au provides the best discrimination; only two independent‐fall irons found after 1980 with good recovery documentation fall within the 90% contour ellipse around the centroid of this Campo field, and one of these is from Antarctica. Now (early 2018) a total of 36 other irons attributed to other geographical locations have compositions that cannot be resolved from the Campo compositional field. Because it is possible that some of these are actually independent falls, the Meteoritical Society Nomenclature Committee has chosen to assign about half these meteorites Nova XXX names used for meteorites whose discovery localities are not adequately documented. However, for Campo‐like irons with too little information (e.g., total weight not known) or for which no adequately large type specimens are available, the decision is to call them Campos with the working name used during the UCLA analysis. In the UCLA Meteorite Collection, they are cataloged together with the documented Campos.  相似文献   

19.
We collected the published noble gas data of altogether 35 lunar meteorites. This compilation includes the stable isotopes of He, Ne, Ar, Kr, and Xe. We also give a summary of cosmogenic, trapped, and radiogenic noble gas components of lunar meteorites for which data are available in the literature.  相似文献   

20.
Meteoritical Bulletin 100 contains 1943 meteorites including 8 falls (Boumdeid [2011], Huaxi, Ko?ice, Silistra, So?tmany, Sutter's Mill, Thika, Tissint), with 1575 ordinary chondrites, 139 carbonaceous chondrites, 96 HED achondrites, 25 ureilites, 18 primitive achondrites, 17 iron meteorites, 15 enstatite chondrites, 11 lunar meteorites, 10 mesosiderites, 10 ungrouped achondrites, 8 pallasites, 8 Martian meteorites, 6 Rumuruti chondrites, 3 enstatite achondrites, and 2 angrites, and with 937 from Antarctica, 592 from Africa, 230 from Asia, 95 from South America, 44 from North America, 36 from Oceania, 6 from Europe, and 1 from an unknown location. This will be the last Bulletin published in the current format. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available online at http://www.lpi.usra.edu/meteor/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号