首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.  相似文献   

2.
Proposed is a method of downscaling of the global ensemble seasonal forecasts of air temperature computed using the SLAV model of the Hydrometcenter of Russia. The method is based on the regression and suggests a probabilistic interpretation of forecasts based on the assessment of uncertainty associated with the regression and model forecast ensemble spread. The verification of the method for 70 weather stations of North Eurasia using the rank probability skill score RPSS showed a significant advantage of downscaled forecasts over the forecasts interpolated from the model grid points. It is concluded that the use of the downscaling method is reasonable for the long-range forecasting of the station air temperature for North Eurasia.  相似文献   

3.
欧亚大陆积雪对我国春季气候可预报性的影响   总被引:1,自引:0,他引:1  
陈红 《大气科学》2017,41(4):727-738
利用大气环流模式IAP9L_CoLM,通过两组集合后报试验,考察了欧亚大陆积雪对我国春季气候可预报性的影响。一组试验为常规后报试验,积雪是由模式陆面过程预报得到的,另一组试验为积雪试验,模式积分过程中欧亚大陆雪水当量由微波遥感积雪资料替代,一天替换一次。通过分析两组试验后报结果的差异,来考察欧亚大陆积雪对我国春季(3~5月)气候可预报性的影响。分析表明:欧亚大陆积雪模拟水平的改善能提高春季欧亚大陆中高纬环流场(海平面气压场和中、高层位势高度场)的可预报性,模式对我国春季气温异常的年际变化和空间分布的可预报能力也有显著增强。对我国春季降水,虽然预报技巧较低,但引入较真实的欧亚积雪作用后,由于中高纬环流场预报技巧的改进导致降水的预测能力也有所改进。个例分析也表明,欧亚中高纬春季积雪异常模拟水平的改善导致了欧亚中高纬贝加尔湖及以南区域环流场可预报性的提高,最终使中国东部区域春季气候异常模拟技巧得以改善。以上结果也证实,欧亚大陆积雪是影响东亚区域春季气候的一个重要因子,要提高模式对中国春季气候的预报技巧,积雪模拟水平的改进是非常必要的。  相似文献   

4.
Potential predictability and skill of simulated Eurasian snow cover are explored using a suite of seasonal ensemble hindcasts (i.e. retrospective forecasts), an ensemble climate simulation (spanning the years 1982–1998) and observations. Using remotely sensed observations of snow cover, we find significant point-wise correlation over the North Atlantic and North Pacific between winter and spring averaged sea-surface temperatures and Eurasian snow cover area. The observed correlation shows no discernible pattern related to the El Niño-Southern Oscillation (ENSO). The hindcasts show correlation patterns similar to the observations. However, the climate simulation shows an exaggerated ENSO pattern. The results underscore the importance of initialization in seasonal climate forecasts, and that the observed potential predictability of Eurasian snowcover cannot be solely attributed to ENSO.  相似文献   

5.
On the basis of two ensemble experiments conducted by a general atmospheric circulation model (Institute of Atmospheric Physics nine-level atmospheric general circulation model coupled with land surface model, hereinafter referred to as IAP9L_CoLM), the impacts of realistic Eurasian snow conditions on summer climate predictability were investigated. The predictive skill of sea level pressures (SLP) and middle and upper tropospheric geopotential heights at mid-high latitudes of Eurasia was enhanced when improved Eurasian snow conditions were introduced into the model. Furthermore, the model skill in reproducing the interannual variation and spatial distribution of the surface air temperature (SAT) anomalies over China was improved by applying realistic (prescribed) Eurasian snow conditions. The predictive skill of the summer precipitation in China was low; however, when realistic snow conditions were employed, the predictability increased, illustrating the effectiveness of the application of realistic Eurasian snow conditions. Overall, the results of the present study suggested that Eurasian snow conditions have a significant effect on dynamical seasonal prediction in China. When Eurasian snow conditions in the global climate model (GCM) can be more realistically represented, the predictability of summer climate over China increases.  相似文献   

6.
Land surface hydrology (LSH) is a potential source of long-range atmospheric predictability that has received less attention than sea surface temperature (SST). In this study, we carry out ensemble atmospheric simulations driven by observed or climatological SST in which the LSH is either interactive or nudged towards a global monthly re-analysis. The main objective is to evaluate the impact of soil moisture or snow mass anomalies on seasonal climate variability and predictability over the 1986–1995 period. We first analyse the annual cycle of zonal mean potential (perfect model approach) and effective (simulated vs. observed climate) predictability in order to identify the seasons and latitudes where land surface initialization is potentially relevant. Results highlight the influence of soil moisture boundary conditions in the summer mid-latitudes and the role of snow boundary conditions in the northern high latitudes. Then, we focus on the Eurasian continent and we contrast seasons with opposite land surface anomalies. In addition to the nudged experiments, we conduct ensembles of seasonal hindcasts in which the relaxation is switched off at the end of spring or winter in order to evaluate the impact of soil moisture or snow mass initialization. LSH appears as an effective source of surface air temperature and precipitation predictability over Eurasia (as well as North America), at least as important as SST in spring and summer. Cloud feedbacks and large-scale dynamics contribute to amplify the regional temperature response, which is however, mainly found at the lowest model levels and only represents a small fraction of the observed variability in the upper troposphere.  相似文献   

7.
欧亚大陆积雪是重要的气候预测因子,评估其在气候模式中的预测潜力可为季节气候预测和模式发展提供重要参考。本文利用IAP AGCM4的多年集合后报结果,分析了欧亚大陆春季雪水当量的可预报性。结果表明该模式对提前1月后报的欧亚大陆春季雪水当量的空间分布,主要模态及变化趋势具有较好的可预报能力。此外模式对欧亚中高纬积雪的年际异常也具有较高的预报技巧,特别是高纬度区域。可预报性来源分析则表明,大气初始异常对欧亚中高纬积雪可预报性的影响与海温异常相比显得更为重要。  相似文献   

8.
This study presented an evaluation of tropical cyclone (TC) intensity forecasts from five global ensemble prediction systems (EPSs) during 2015-2019 in the western North Pacific region. Notable error features include the underestimation of the TC intensity by ensemble mean forecast and the under-dispersion of the probability forecasts.The root mean square errors (brier scores) of the ensemble mean (probability forecasts) generally decrease consecutively at long lead times during the five years, but fluctuate between certain values at short lead times.Positive forecast skill appeared in the most recent two years (2018-2019) at 120 h or later as compared with the climatology forecasts. However, there is no obvious improvement for the intensity change forecasts during the 5-yearperiod, with abrupt intensity change remaining a big challenge. The probability forecasts show no skill for strongTCs at all the lead times. Among the five EPSs, ECMWF-EPS ranks the best for the intensity forecast, while NCEP-GEFS ranks the best for the intensity change forecast, according to the evaluation for ensemble mean and dispersion. As for the other probability forecast evaluation, ECMWF-EPS ranks the best at lead times shorter than 72 h, while NCEP-GEFS ranks the best later on.  相似文献   

9.
We assessed current status of multi-model ensemble (MME) deterministic and probabilistic seasonal prediction based on 25-year (1980–2004) retrospective forecasts performed by 14 climate model systems (7 one-tier and 7 two-tier systems) that participate in the Climate Prediction and its Application to Society (CliPAS) project sponsored by the Asian-Pacific Economic Cooperation Climate Center (APCC). We also evaluated seven DEMETER models’ MME for the period of 1981–2001 for comparison. Based on the assessment, future direction for improvement of seasonal prediction is discussed. We found that two measures of probabilistic forecast skill, the Brier Skill Score (BSS) and Area under the Relative Operating Characteristic curve (AROC), display similar spatial patterns as those represented by temporal correlation coefficient (TCC) score of deterministic MME forecast. A TCC score of 0.6 corresponds approximately to a BSS of 0.1 and an AROC of 0.7 and beyond these critical threshold values, they are almost linearly correlated. The MME method is demonstrated to be a valuable approach for reducing errors and quantifying forecast uncertainty due to model formulation. The MME prediction skill is substantially better than the averaged skill of all individual models. For instance, the TCC score of CliPAS one-tier MME forecast of Niño 3.4 index at a 6-month lead initiated from 1 May is 0.77, which is significantly higher than the corresponding averaged skill of seven individual coupled models (0.63). The MME made by using 14 coupled models from both DEMETER and CliPAS shows an even higher TCC score of 0.87. Effectiveness of MME depends on the averaged skill of individual models and their mutual independency. For probabilistic forecast the CliPAS MME gains considerable skill from increased forecast reliability as the number of model being used increases; the forecast resolution also increases for 2 m temperature but slightly decreases for precipitation. Equatorial Sea Surface Temperature (SST) anomalies are primary sources of atmospheric climate variability worldwide. The MME 1-month lead hindcast can predict, with high fidelity, the spatial–temporal structures of the first two leading empirical orthogonal modes of the equatorial SST anomalies for both boreal summer (JJA) and winter (DJF), which account for about 80–90% of the total variance. The major bias is a westward shift of SST anomaly between the dateline and 120°E, which may potentially degrade global teleconnection associated with it. The TCC score for SST predictions over the equatorial eastern Indian Ocean reaches about 0.68 with a 6-month lead forecast. However, the TCC score for Indian Ocean Dipole (IOD) index drops below 0.40 at a 3-month lead for both the May and November initial conditions due to the prediction barriers across July, and January, respectively. The MME prediction skills are well correlated with the amplitude of Niño 3.4 SST variation. The forecasts for 2 m air temperature are better in El Niño years than in La Niña years. The precipitation and circulation are predicted better in ENSO-decaying JJA than in ENSO-developing JJA. There is virtually no skill in ENSO-neutral years. Continuing improvement of the one-tier climate model’s slow coupled dynamics in reproducing realistic amplitude, spatial patterns, and temporal evolution of ENSO cycle is a key for long-lead seasonal forecast. Forecast of monsoon precipitation remains a major challenge. The seasonal rainfall predictions over land and during local summer have little skill, especially over tropical Africa. The differences in forecast skills over land areas between the CliPAS and DEMETER MMEs indicate potentials for further improvement of prediction over land. There is an urgent need to assess impacts of land surface initialization on the skill of seasonal and monthly forecast using a multi-model framework.  相似文献   

10.
An hourly-cycling ensemble Kalman filter (EnKF) working at 2.5?km horizontal grid spacing is implemented over southern Ontario (Canada) to assimilate Meteorological Terminal Aviation Routine Weather Reports (METARs) in addition to the observations assimilated operationally at the Canadian Meteorological Centre. This high-resolution EnKF (HREnKF) system employs ensemble land analyses and perturbed roughness length to prevent an ensemble spread that is too small near the surface. The HREnKF then performs continuously for a four-day period, from which twelve-hour ensemble forecasts are launched every six hours. The impact on analyses and short-term forecasts of assimilating METAR data is given special attention.

It is shown that using ensemble land surface analyses increases near-surface ensemble spreads for temperature and specific humidity. Perturbing roughness length enlarges the spread for surface wind. Given sufficient ensemble spread, the four-day case study shows that the near-surface model state is brought closer to surface observations during the cycling process. The impact of assimilating surface data can also be seen at higher levels by using aircraft reports for verification. The ensemble forecast verification suggests that METAR data assimilation improves ensemble forecasts of air temperature and dewpoint near the surface up to a lead time of six hours or even longer. However, only minor improvement is found in surface wind forecasts.  相似文献   

11.
The probability multimodel forecast system based on the Asia-Pacific Economic Cooperation Climate Center (APCC) model data is verified. The winter and summer seasonal mean fields T 850 and precipitation seasonal totals are estimated. To combine the models into a multimodel ensemble, the probability forecast is calculated for each of single models first, and then these forecasts are combined using the total probability formula. It is shown that the multimodel forecast is considerably more skilful than the single-model forecasts. The forecast quality is higher in the tropics compared to the mid- and high latitudes. The multimodel ensemble temperature forecasts outperform the random and climate forecasts for Northern Eurasia in the above- and below-normal categories. Precipitation forecast is less successful. For winter, the combination of single-model ensembles provides the precipitation forecast skill exceeding that of the random forecast for both Northern Eurasia and European Russia.  相似文献   

12.
马艳  陈尚 《大气科学进展》2007,24(5):863-874
The simulations were performed using a modified mesoscale model,the Polar MM5,which was adapted for use within polar regions.The objective of the study was to illustrate the skill of the Polar MM5 in simulating atmospheric behavior over the Arctic river basins.Automatic weather station data,global atmospheric analyses,as well as near-surface and upper-air observations were used to verify the simulation. Parallel simulations of the Polar MM5 and the original MM5 within the period 19-29 April 1997 simula- tions revealed that Polar MM5 reproduced better near-surface variables forecasts than the original MM5 for the region located over the North American Arctic regions.The well predicted near-surface temperature and mixing ratio by the Polar MM5 confirmed the modified physical parameterization schemes that were used in this model are appropriate for the Arctic river regions.Then the extended evaluations of the Polar MM5 simulations over both the North American and Eurasian domains during 15 December 2002 to 15 May 2003 were then carried out.The time series plots and statistical analyses from the observations and the Polar MM5 simulations at 16 stations for the near-surface and vertical profiles at 850 hPa and 500 hPa variables were analyzed.The model was found to reproduce the observed atmospheric state both at magnitude and variability with a high degree of accuracy,especially for temperature and near-surface winds,although there was a slight cold bias that existed near the surface.  相似文献   

13.
童颖睿  闵锦忠 《气象科学》2022,42(2):213-224
基于WRF v4.0模式,选择Lin方案降水粒子(雨、雪和霰)谱截断参数和霰密度,在对流尺度下对"7.20"华北特大暴雨进行参数扰动集合预报试验。按照参数序列依次设置单/双/多截断参数组合、四参数组合和霰参数组合,对比分析其对降水和大气变量的预报技巧,及扰动影响的敏感性。结果表明,四参数组合明显降低了大暴雨空报概率,有效提升了500~925 hPa经向风和近地面温度场的离散度技巧;随组合中参数的增多,扰动对预报的整体影响依次增强,多截断参数组合对中低层水汽场和近地面温度的预报技巧均有所改善;其他组合存在离散度/降水预报负技巧等问题,四参数和多截断参数组合是更好的对流尺度云微物理方案参数扰动选择。  相似文献   

14.
During the summer monsoon (1 June to 30 September) 2007, real-time district level rainfall forecasts in short-range time scale were generated for Indian region applying multimodel ensemble technique. The pre-assigned grid point weights on the basis of correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of 0.5° × 0.5° utilizing two seasons datasets (1 June to 30 September, 2005 and 2006), and the multimodel ensemble forecasts (day 1 and day 2 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district taking the average value of all grid points falling in a particular district. In this paper we examined the performance skill of the multimodel ensemble-based real-time district level short-range forecast of rainfall. It has clearly emerged from the results that the multimodel ensemble technique reported in this study is superior to each ensemble member. District wise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most districts of the country, particularly over the districts where the monsoon systems are dominant. Though the procedure shows appreciable skill to predict occurrence or non-occurrence of rainfall at the district level, it always underestimates rainfall amount, particularly in heavy rainfall events. Possible reasons of this failure may be due to model bias and poor data assimilation procedure.  相似文献   

15.
1.IntroductionThispaperexploresanensembleforecaststrategyforthelarge--scaletropicalpredictionproblem.Thisisgeneralizedfromarecentstudyontheuseofempiricalorthogonalfunction(EOF)--basedperturbationsforhurricanetrackensembleforecasts,(ZhangandKrishnamur...  相似文献   

16.
Three ensembles of AMIP-type simulations using the Arpege-climat coupled land–atmosphere model have been designed to assess the relative influence of SST and soil moisture (SM) on climate variability and predictability. The study takes advantage of the GSWP2 land surface reanalysis covering the 1986–1995 period. The GSWP2 forcings have been used to derive a global SM climatology that is fully consistent with the model used in this study. One ensemble of ten simulations has been forced by climatological SST and the simulated SM is relaxed toward the GSWP2 reanalysis. Another ensemble has been forced by observed SST and SM is evolving freely. The last ensemble combines the observed SST forcing and the relaxation toward GSWP2. Two complementary aspects of the predictability have been explored, the potential predictability (analysis of variance) and the effective predictability (skill score). An analysis of variance has revealed the effects of the SST and SM boundary forcings on the variability and potential predictability of near-surface temperature, precipitation and surface evaporation. While in the tropics SST anomalies clearly maintain a potentially predictable variability throughout the annual cycle, in the mid-latitudes the SST forced variability is only dominant in winter and SM plays a leading role in summer. In a similar fashion, the annual cycle of the hindcast skill (evaluated as the anomalous correlation coefficient of the three ensemble means with respect to the “observations”) indicates that the SST forcing is the dominant contributor over the tropical continents and in the winter mid-latitudes but that SM is supporting a significant part of the skill in the summer mid-latitudes. Focusing on boreal summer, we have then investigated different aspects of the SM and SST contribution to climate variations in terms of spatial distribution and time-evolution. Our experiments suggest that SM is potentially an additional source of climate predictability. A realistic initialization of SM and a proper representation of the land–atmosphere feedbacks seem necessary to improve state-of-the-art dynamical seasonal predictions, but will be actually efficient only in the areas where SM anomalies are themselves predictable at the monthly to seasonal timescale (since remote effects of SM are probably much more limited than SST teleconnections).  相似文献   

17.
基于TIGGE资料的地面气温多模式超级集合预报   总被引:13,自引:3,他引:10       下载免费PDF全文
基于TIGGE资料, 采用均方根误差分别对欧洲中期天气预报中心、日本气象厅、美国国家环境预报中心和英国气象局4个中心集合预报的地面气温场集合平均结果进行检验评估, 比较各中心地面气温的预报效果。并利用超级集合、多模式集合平均和消除偏差集合平均3种方法对4个中心的地面气温预报进行集成, 同时对预报结果进行分析。结果表明: 2007年夏季日本气象厅与欧洲中期天气预报中心在北半球大部分地区预报效果最好, 各中心在不同地区预报效果不同。超级集合与消除偏差集合平均降低了预报误差, 预报效果优于最好的单个中心预报和多模式集合平均。对于较长的预报时效, 消除偏差集合平均表现出了更好的预报性能。  相似文献   

18.
We investigate the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model. The decadal predictions are performed in both retrospective (hindcast) and forecast modes. Specifically, the full set of prediction experiments consists of 3-member ensembles of 30-year simulations, starting at 5-year intervals from 1960 to 2005, using historical radiative forcing conditions for the 1960–2005 period, followed by RCP4.5 scenario settings for the 2006–2035 period. The ocean initial states are provided by ocean reanalyses differing by assimilation methods and assimilated data, but obtained with the same ocean model. The use of alternative ocean reanalyses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system appears to be driven to large extent by trends in the radiative forcing. However, after detrending, a residual skill over specific regions of the ocean emerges in the near-term. Specifically, natural fluctuations in the North Atlantic sea-surface temperature (SST) associated with large-scale multi-decadal variability modes are predictable in the 2–5 year range. This is consistent with significant predictive skill found in the Atlantic meridional overturning circulation over a similar timescale. The dependency of forecast skill on ocean initialization is analysed, revealing a strong impact of details of ocean data assimilation products on the system predictive skill. This points to the need of reducing the large uncertainties that currently affect global ocean reanalyses, in the perspective of providing reliable near-term climate predictions.  相似文献   

19.
Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems(EPSs) and different cases, theoretical analysis regarding ensemble mean forecast skill has rarely been investigated, especially quantitative analysis without any assumptions of ensemble members. This paper investigates fundamental questions about the ensemble mean, such as the advantage of the ensemble mean over individual members, the potential skill of the ensemble mean, and the skill gain of the ensemble mean with increasing ensemble size. The average error coefficient between each pair of ensemble members is the most important factor in ensemble mean forecast skill, which determines the mean-square error of ensemble mean forecasts and the skill gain with increasing ensemble size. More members are useful if the errors of the members have lower correlations with each other, and vice versa. The theoretical investigation in this study is verified by application with the T213 EPS. A typical EPS has an average error coefficient of between 0.5 and 0.8; the 15-member T213 EPS used here reaches a saturation degree of 95%(i.e., maximum 5% skill gain by adding new members with similar skill to the existing members) for 1–10-day lead time predictions, as far as the mean-square error is concerned.  相似文献   

20.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号