首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 776 毫秒
1.
The abundance and lithic content of ice rafted detritus in glacial North Atlantic sediment cores vary abruptly on millennial time scales that have been correlated to Dansgaard-Oeschger cycles in the Greenland ice cores. There is growing evidence that various ice sheet outlets contributed increased iceberg fluxes at multiple discrete intervals, and the relative timing of iceberg discharges from different sources is important for understanding interactions between oceans and ice sheets. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 20 samples taken at 600 to 700 yr spacing between 10,500 and 22,000 yr B.P., from Orphan Knoll core EW9303-GGC31. Heinrich layers are characterized by a dominant Paleoproterozoic hornblende provenance consistent with published studies. A change in provenance between Heinrich events H2 and H1 indicates contributions of iceberg calving from the Newfoundland and southern Labrador margins. Between H1 and the Younger Dryas interval, Paleoproterozoic ice rafted grains remained dominant. The dominance of Baffin Island (or Greenland?) sources to the ice rafted detritus is ascribed to the retreat of the southern Laurentide ice sheet at about the time of H1—a retreat that isolated Newfoundland and southern Labrador ice from the shelf-slope boundary.  相似文献   

2.
王有清  姚檀栋 《冰川冻土》2002,24(5):550-558
冰芯记录中的气候变化是古气候研究中的重要组成部分. 极地、中低纬度和热带地区的冰芯记录表明, 在冰期间冰期旋回大尺度气候变化背景下, 全球经历了一系列数百年至千年时间尺度的快速气候突变事件, 诸如末次间冰期的干冷事件、末次冰期的DansgaardOeschger事件、 Heinrich事件和Younger Dryas事件等, 虽然这些穿插在冰阶中的暖湿气候事件、间冰阶中的干冷气候事件的成因、机制和影响范围还存在明显的不确定性. 主要介绍不同区域冰芯记录中末次间冰期冰期旋回这些气候突变事件发生的时间、过程和机制等的研究进展.  相似文献   

3.
Establishing the precise timing of continental glacial dynamics and abrupt high‐latitude climate events is crucial to understanding the causes of global climate change. Here we present multi‐proxy records in a lake sediment core from arid Inner Mongolia (Wuliangsuhai Lake) that show two distinct glacially derived sedimentation events at ~26.2–21.8 and ~17.3–11.5k cal a BP. Fine sediments from the Last Glacial Maximum separate these glacially derived coarse sediments. Within these intervals, the occurrence of granite clasts at ~24–23.5, 17.3–17 and 15.6–14.1k cal a BP implies either sediment discharge by meltwater as well as strong current flow in the Yellow River and/or sediment influx through hill‐slope mass wasting and landsliding from the nearby Yin Mountains. Surface microfeatures of quartz grains and spot elemental analysis of black specks in these intervals, however, indicate that physical weathering is dominant and that the provenance of the rocks is probably from a glacial source. To the best of our knowledge, this is the first time glacier‐derived materials have been detected in any desert lake in the Yellow River basin. The occurrence of granite clasts roughly correlates with Heinrich events in the North Atlantic, suggesting synchronous ice sheet dynamics in high‐ and mid‐latitude regions during the Last Glacial period. Although our data provide unprecedented evidence for the influence of glacier‐related processes in arid Inner Mongolia, further well‐dated records are clearly needed to re‐evaluate the correlative inference drawn between granite clast layers in Wuliangsuhai Lake and Heinrich events in the North Atlantic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Heinrich事件和末次冰期气候的不稳定性   总被引:10,自引:0,他引:10  
对北大西洋深海沉积物的研究表明:末次冰期北大西洋沉积物记录中有多次洋面温度降低、有孔虫含量减少、盐度降低和粗颗粒的碳酸盐碎屑快速堆积的现象,这些时间跨度上千年或几百年的气候快速波动被称为Heinrich事件[1-4],很难用古气候的米兰科维奇理论来解释。最近对末次冰期中国马兰黄土堆积的调查发现,在末次冰期之中东亚冬季风也有多次加强,它与北大西洋沉积物中的Heinrich事件对应很好,暗示着东亚季风的变迁更直接受控于北半球冰量的变化,而不是过去人们认为的东亚古季风气候变化与地球轨道变化引起太阳辐射变化直接相关。   相似文献   

5.
末次间冰期以来地球气候系统的突变   总被引:14,自引:0,他引:14  
地球气候系统的突然变化是近年来地学研究的热点。取自极地冰芯、海洋沉积物和陆地的古气候记录表明,末次间冰期以来全球经历了一系列数百年—千年时间尺度的气候突变事件,证明了在末次冰期—间冰期旋回大尺度气候变化背景下,全球气候存在较大不稳定性这一基本事实。尽管末次间冰期以来这些数百年—千年时间尺度气候突变事件的成因和影响范围还存在明显的不确定性,但已从诸如末次间冰期(MIS 5e)中期的干冷事件、末次冰期的Dansgaard-Oeschger旋回、Heinrich事件和Younger Dryas事件以及发生在全新世冰后期的一些降温事件的研究中,获得对过去130 ka来气候变化过程总体上的认识和理解。综述了近年来的主要研究成果,介绍了有关末次间冰期以来全球气候突变事件发生的时间、过程和机制等最新的研究进展。  相似文献   

6.
The Late Quaternary sediment sequence of the continental margin in the eastern Weddell Sea is well suited for palaeoenvironmental reconstructions. Two cores from the upper slope, which contain the sedimentary record of the last 300 ky, have been sedimentologically investigated. Age models are based on lithostratigraphy and are correlated with the stable isotope record. As a result of a detailed analysis of the clay mineral composition, grain size distributions and structures, this sedimentary record provides the first marine evidence that the Antarctic ice sheet extended to the shelf edge during the last glacial.The variations in volume and size of the ice sheet were also simulated in numerical models. Changes in accumulation rate and ice temperature are of some importance, but the model revealed that fluctuations are primarily driven by changes in eustatic sea-level and that the ice edge extended to the shelf edge during the last glacial maximum. This causal relationship implies that the maximum ice extension strongly depends on the magnitude and duration of the sea-level depression during a glacial period. The results of the sedimentological investigations and of the numerical models show that the Antarctic ice sheet follows glacial events in the northern hemisphere by teleconnections of sea level. Correspondence to: H. Grobe  相似文献   

7.
《Quaternary Science Reviews》2007,26(7-8):862-875
High resolution, multi-proxy records of ice-rafted debris (IRD) flux and provenance in the NE Atlantic detail the development, variability and decline of marine margins of the last glacial circum-North Atlantic ice sheets. Coupled lithological identification, Sr and Nd isotopic composition and 40Ar/39Ar ages of individual hornblende grains reduce ambiguity as to IRD potential source region, allowing clear differentiation between Laurentide (LIS), Icelandic and British (BIS) ice sheet sources (the Icelandic and BIS are collectively referred to as the NW European ice sheet, NWEIS). A step-wise increase in the flux of IRD to the core site at ∼26.5 ka BP documents BIS advance and glaciation of Ireland. Millennial-scale variability of the BIS at a ∼2 ka periodicity is inferred through clusters of pulsed IRD fluxes throughout the late glacial (26.5–10 ka BP). Combination of these European IRD events and the ∼7 ka periodicity of LIS instability is thought to account for quasi-synchronicity of the NWEIS and LIS IRD pulses at Heinrich event (H) 2 and H1, previously suggested to represent the possible involvement of the NWEIS in the initiation of H events. Furthermore, the lack of extensive NWEIS marine margin is inferred prior to H3 (31.5 ka BP), such that no ‘European precursor’ event is associated with either H5 or H4. This suggests that ‘precursor events’ were not directly implicated in the collapse of the LIS, and the persistent instabilities of the BIS that are clustered at a 2 ka periodicity are incompatible with the concept that both H events and their ‘precursors’ are independent responses to a common underlying trigger.  相似文献   

8.
Direct traces of past sea levels are based on the elevation of old coral reefs at times of sea level highstands. However, these measurements are discontinuous and cannot be easily correlated with climate records from ice cores. In this study we show a new approach to recognizing the imprint of sea level changes in continuous sediment records taken from the continental slope at locations that were continuously submerged, even during periods of sea level lowstand. By using a sediment core precisely synchronized with Greenland ice cores, we were able to recognize major floods of the Mediterranean continental shelf over the past 270 kyr. During the last glacial period five flooding events were observed at the onset of the warmest Greenland interstadials. Consistent correspondence between warm climate episodes and eustatic sea level rises shows that these global flooding events were generated by pronounced melting of the Northern Hemisphere ice sheets, due to rapid intensification of Atlantic Meridional Overturning Circulation.The method described in this study opens a new perspective for inter-hemispheric synchronization of marine climate records if applied in other continental margins from the Southern Hemisphere or the equatorial regions.  相似文献   

9.
Provenance studies of anomalously high-flux layers of ice-rafted detritus (IRD) in North Atlantic sediments of the last glacial cycle show evidence for massive iceberg discharges coming from the Hudson Strait region of the Laurentide Ice Sheet (LIS). Although these so-called Heinrich events (H events) are commonly thought to be associated with abrupt drawdown of the LIS interior, uncertainties remain regarding the sector(s) of this multi-domed ice sheet that conveyed ice through Hudson Strait. In Northern Québec and Labrador (NQL), large-scale patterns of glacial lineations indicate massive ice flows towards Ungava Bay and Hudson Strait that could reflect the participation of the Labrador–Québec ice dome in H events. Here we evaluate this hypothesis by constraining the source of NQL glacial deposits, which provide an estimate of the provenance characteristics of IRD originating from this sector. Specifically, we use 40Ar/39Ar ages of detrital hornblende grains in 25 till samples distributed along a latitudinal transect (lat. 58°) extending east and west of Ungava Bay. The data show that tills located west and southwest of the Ungava Bay region are largely dominated by hornblende grains with Archean ages (>2.6 Ga), while tills located east of Ungava Bay are characterized by grains with early Paleoproterozoic ages (2.0–1.8 Ga), although most samples contain a few Archean-age grains. IRD derived from the NQL region should thus be characterized by a large proportion of Archean-age detrital grains, which contrasts significantly with the predominant Paleoproterozoic 40Ar/39Ar ages (1.8–1.6 Ga) typically reported for the dominant age population of hornblende grains in H layers. Comparisons with IRD through the last glacial cycle from a western North Atlantic core off Newfoundland do not show evidence for any prominent ice-rafted event with the provenance characteristics of NQL glacial deposits, thereby suggesting that significant ice-calving event(s) from the Labrador–Québec sector may have been limited throughout that interval. Although these results tend to point towards a relative stability of this ice dome during H events, our study also indicates that further provenance work is required on IRD proximal to the Hudson Strait mouth in order to constrain with a greater confidence the sector(s) of the LIS that fed ice into Hudson Strait during H events. Alternatively, these results and other paleogeographic considerations tend to support models suggesting that part of the Ungava Bay glacial lineations could be associated with a Late-Glacial ice flow across Hudson Strait.  相似文献   

10.
Ice‐rafted debris (IRD) seeded into the ocean from Northern Hemisphere ice sheets is found in ocean cores along the southwestern European margin through the last glacial period. It is known that the origin of this IRD, especially off Iberia, can vary between North America and western Europe during short‐lived episodes of greatly enhanced iceberg flux, known as Heinrich events, although in most Heinrich events the IRD has a North American source. During the longer times of much lower IRD fluxes between Heinrich events, use of an intermediate complexity climate model, coupled to an iceberg dynamic and thermodynamic model, shows that background levels of IRD most likely originate from western Europe, particularly the British–Irish Ice Sheet. Combining modelling with palaeoceanographic evidence supports reconstructions of a short‐lived, but substantial, Celtic and Irish Sea Ice Stream around 23 ka. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The relationship of sea-level changes and short-term climatic changes with turbidite deposition is poorly documented, although the mechanisms of gravity-driven sediment transport in submarine canyons during sea-level changes have been reported from many regions. This study focuses on the activity of the Dakar Canyon off southern Senegal in response to major glacial/interglacial sea-level shifts and variability in the NW-African continental climate. The sedimentary record from the canyon allows us to determine the timing of turbidite events and, on the basis of XRF-scanning element data, we have identified the climate signal at a sub-millennial time scale from the surrounding hemipelagic sediments. Over the late Quaternary the highest frequency in turbidite activity in the Dakar Canyon is confined to major climatic terminations when remobilisation of sediments from the shelf was triggered by the eustatic sea-level rise. However, episodic turbidite events coincide with the timing of Heinrich events in the North Atlantic. During these times continental climate has changed rapidly, with evidence for higher dust supply over NW Africa which has fed turbidity currents. Increased aridity and enhanced wind strength in the southern Saharan-Sahelian zone may have provided a source for this dust.  相似文献   

12.
Centennial–millennial dynamics of tropical salt marsh vegetation are documented in the pollen record from marine core MD03-2622, Cariaco Basin, Venezuela, which spans the glacial period between 63 and 29 ka. Five rapid and abrupt expansions of salt marsh vegetation are linked with North Atlantic Heinrich events (HEs). Within each event, a recurrent pattern – starting with species of Chenopodiaceae, followed by grasses, and subsequently by Cyperaceae species – suggests a successional process that is determined by the close relationship between sea-level and community dynamics. The salt tolerant Chenopodiaceae, at the base of each sequence, indicate hypersaline intertidal environments, which were most likely promoted by extremely dry atmospheric conditions. Rapid sea-level rise characterizes the onset of HE stadials, causing erosion of marsh sediments, and continued recruitment of pioneer species (Chenopodiaceae), which are the only ones capable of tolerating the rapid rate of disturbance. Once, as sea-level drops or as rise decelerates, marsh plants are able to trap and stabilize sediments, favouring the establishment of more competitive species (graminoids). The increment of marsh height as a result of autochthonous sediment accumulation reduces the extent of hypersaline environments, and allows the establishment of mesohaline species. These results add to the scarce knowledge on tropical salt marsh ecosystems, and provide independent paleoclimatic evidence on sea-level changes occurring simultaneously with Antarctica climate variations.  相似文献   

13.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

14.
桂林地区4万年来气候变化及其动力机制浅析   总被引:6,自引:0,他引:6  
通过桂林灌阳响水岩1号石笋的测年和O、C同位素的详细研究,得出了桂林地区4万a来高分辨率的古气候变化的连续记录,并揭示了由末次冰期向全新世的突变过程和3次与Heinrich事件(H1、H2、H3)对应的气候突变事件。在此基础上,通过与GISP2冰芯记录、古海水表面温度记录、深海海底生物的O同位素记录和苏禄海沉积物O同位素记录的对比,认为我国古季风环流变化的直接动力机制是全球冰量的变化。  相似文献   

15.
It is well established that orbital scale sea-level changes generated larger transport of sediments into the deep-sea during the last glacial maximum than the Holocene. However, the response of sedimentary processes to abrupt millennial-scale climate variability is rather unknown. Frequency of distal turbidites and amounts of advected detrital carbonate are estimated off the Lisbon–Setúbal canyons (core MD03-2698, at 4602 mwd), within a chronostratigraphy based on radiometric ages, oxygen isotopes and paleomagnetic key global anomalies. We found that: 1) higher frequency of turbidites concurred with Northern Hemisphere coldest temperatures (Greenland Stadials [GS], including Heinrich [H] events). But more than that, an escalating frequency of turbidites starts with the onset of global sea-level rising (and warming in Antarctica) and culminates during H events, at the time when rising is still in its early-mid stage, and the Atlantic Meridional Overturning Circulation (AMOC) is re-starting. This short time span coincides with maximum gradients of ocean surface and bottom temperatures between GS and Antarctic warmings (Antarctic Isotope Maximum; AIM 17, 14, 12, 8, 4, 2) and rapid sea-level rises. 2) Trigger of turbidity currents is not the only sedimentary process responding to millennial variability; land-detrital carbonate (with a very negative bulk δ18O signature) enters the deep-sea by density-driven slope lateral advection, accordingly during GS. 3) Possible mechanisms to create slope instability on the Portuguese continental margin are sea-level variations as small as 20 m, and slope friction by rapid deep and intermediate re-accommodation of water masses circulation. 4) Common forcing mechanisms appear to drive slope instability at both millennial and orbital scales.  相似文献   

16.
Ice-raft debris layers in the North Atlantic sediments of IRD belt characterize abrupt climate variability, corresponding to Heinrich events during the Last Glacial and Heinrich(-like) events beyond the Last Glacial. During Heinrich/(-like) events, the Earth's atmosphere, hydrosphere and cryosphere interacted strongly on the millennial-scale and had a profound impact on the global climate. In more than 30 years of continuous research on Heinrich/(-like) events and their remote response, the results have been more focused on the trigger mechanism and the new distinguished proxies of Heinrich/(-like) events. The first occurrence of Heinrich/(-like) events in IRD belt during MIS 16 was the initiation of a major landmark climate mechanism after MPT. The research on Heinrich/(-like) events may require a new ice sheet dynamics model related to the large ice sheet and the long-term ice age, which is forming a new hot topic.  相似文献   

17.
Fundamental characteristics of the climate system during the most recent precessional cycle of the Earth's orbit around the Sun consist of the final expansion of land ice to its maximum extent, the subsequent episode of deglaciation, and the variations of global sea level that accompanied these events. In order to address the important issue of the variation of continental ice volume and related changes in global sea level through the late glacial period, we employ an extended set of observations of the pre-glacial and postglacial history of sea-level rise at the island of Barbados, together with a refined model of continental deglaciation and an accurate methodology for the prediction of postglacial sea-level change. Although our results provide unambiguous evidence that the post LGM rise of eustatic sea-level was very close to the widely supported estimate of 120 m, the data also provide evidence that LGM must have occurred 26,000 years ago, approximately 5000 yr earlier than the usually assumed age.  相似文献   

18.
《Quaternary Science Reviews》2007,26(3-4):312-321
Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.  相似文献   

19.
Haapaniemi, A.I., Scourse, J.D., Peck, V.L., Kennedy, H., Kennedy, P., Hemming, S.R., Furze, M.F.A., Pieńkowski, A.J., Austin, W.E.N., Walden, J., Wadsworth, E. & Hall, I.R. 2010: Source, timing, frequency and flux of ice‐rafted detritus to the Northeast Atlantic margin, 30–12 ka: testing the Heinrich precursor hypothesis. Boreas, Vol. 39, pp. 576–591. 10.1111/j.1502‐3885.2010.00141.x. ISSN 0300‐9483. Increased fluxes of ice‐rafted detritus (IRD) from European ice sheets have been documented some 1000–1500 years before the arrival of Laurentide Ice Sheet (LIS)‐sourced IRD during Heinrich (H) events. These early fluxes have become known as ‘precursor events’, and it has been suggested that they have mechanistic significance in the propagation of H events. Here we present a re‐analysis of one of the main cores used to generate the precursor concept, OMEX‐2K from the Goban Spur covering the last 30 ka, in order to identify whether the British–Irish Ice Sheet (BIIS) IRD fluxes occur only as precursors before H layers. IRD characterization and planktonic foraminiferal δ18O measurements constrained by a new age model have enabled the generation of a continuous record of IRD sources, timing, frequency and flux, and of local contemporary hydrographic conditions. The evidence indicates that BIIS IRD precursors are not uniquely, or mechanistically, linked to H events, but are part of the pervasive millennial‐scale cyclicity. Our results support an LIS source for the IRD comprising H layers, but the ambient glacial sections are dominated by assemblages typical of the Irish Sea Ice Stream. Light isotope excursions associated with H events are interpreted as resulting from the melting of the BIIS, with ice‐sheet destabilization attributed to eustatic jumps generated by LIS discharge during H events. This positive‐feedback mechanism probably caused similar responses in all circum‐Atlantic ice‐sheet margins, and the resulting gross freshwater flux contributed to the perturbation of the Atlantic Meridional Overturning Circulation during H events.  相似文献   

20.
千百年尺度气候快速变化及其数值模拟研究进展   总被引:1,自引:0,他引:1  
靳立亚  陈发虎 《地球科学进展》2007,22(10):1054-1065
千百年尺度全球气候快速变化是古气候研究中的一个重要内容。研究发现,末次冰期和全新世都存在着千年、百年尺度的快速气候变化,其变化幅度可以达到典型的地质变化或天文因子所造成的冰期/间冰期的气候振荡幅度,同时这些古气候事件具有全球性。对冰期和全新世气候变化的数值模拟揭示了气候系统对地球轨道参数变化的响应以及海洋、植被、冰盖、温室气体等反馈因子的重要性,其中大洋温盐环流对北大西洋淡水注入的敏感性与末次冰期和全新世气候快速变化密切相联。利用中等复杂程度的气候模式(EMIC)CLIMBER 2模拟了末次冰期典型时段(60~20 ka BP)D/O和Heinrich事件以及东亚气候的响应过程。模拟研究揭示了全新世青藏高原冰雪环境对亚洲—非洲季风气候的显著影响。今后的古气候模拟研究将在改进模式分辨率、结合古气候代用资料确定更加符合历史时期边界条件以进一步改善气候模式的基础上,更加注重气候突变机制的研究以及加强全球变化背景下的区域气候的长期变化研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号