首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser Raman spectroscopy and cathodoluminescence (CL) image reveal that zircons separated from paragneisses in the southwestern Sulu terrane (eastern China) preserve multi-stage mineral assemblages in different zircon domains. In the same paragneiss zircon sample, some zircon grains retain inherited (detrital) cores with abundant low-pressure mineral inclusions of Qtz + Phe + Ap + impurities and Qtz + Phe + impurities. The ultrahigh-pressure (UHP) metamorphic overgrowths mantles of these zircons preserve Coe, Coe + Phe and other UHP mineral inclusions, indicating that these inherited (detrital) zircons from protoliths experienced metamorphic recrystallization during the Sulu UHP metamorphic event. However, other zircon grains preserve UHP mineral inclusions of Coe, Coe + Ap and Coe + Phe in the cores and mantles, whereas the outmost rims contain quartz (Qtz) and other low-pressure mineral inclusions. These phenomena prove that the second group zircons were crystallized at UHP metamorphic stage and overpr  相似文献   

2.
A combined study using LA-ICP-MS U-Pb dating, Hf isotopes, trace elements and the Ti-in-zircon geo-thermometer was carried out on zircons from the metamorphosed basic-ultrabasic rocks in the meta-morphic basement of the Cathaysia Block, southwestern Zhejiang Province. The formation and meta-morphic ages of the rocks from the metamorphic basement of the Cathaysia Block were determined based on zircon U-Pb geochronology. The age for the magmatic crystalline zircons from the protolith is about 1.85 Ga. The εHf(t) values of the older zircons were from ?7 to ?3, with two-stage model Hf ages (TDM2LC) of about 2.9 to 3.4 Ga, indicating that the source material was derived from anatexis and recy-cling of the Archean crust. The newly formed metamorphic zircons yielded U-Pb ages of 260―230 Ma. The metamorphic temperature calculated using the Ti-in-zircon geothermometer ranged from 610 to 720℃, consistent with the results from petrographic observations, indicating that the Cathaysia Block experienced an amphibolite facies metamorphism during the Indosinian. Results from this study pro-vided an important timeframe for the tectonic evolution in South China and the Southeast Asia during the Late Permian and Early Triassic times.  相似文献   

3.
LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 5.0/-6.0 Ma, and the other orthogneiss sample con- tains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma, 895 Ma and 657 Ma for the magmatic protolith, and metamorphic recrystallized rims with peak 206Pb/238U ages of 559 12/?17 Ma and 516 ± 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 10/?8.0 Ma, 516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Pre- cambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen, the Altyn Tagh belt, north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.  相似文献   

4.
The Dabieshan Orogenic belt is well known for the exhumation of early Mesozoic ultrahigh-pressure (UHP) metamorphic rocks and Jurassic–Cretaceous emplacement of voluminous granitoids. However, the tectonic evolution in the orogen during the Paleozoic, especially its magmatic response to tectonism has not received much attention. As indicated by published data, the Dabieshan orogenic belt contains different records of Paleozoic magmatic-tectonic association in different tectonic units. Occ…  相似文献   

5.
A garnet-pyroxene bearing amphibolite as a xenolith hosted by the Mesozoic igneous rocks from Xuzhou-Suzhou area was dated by zircon SHRIMP U-Pb method, which yields a metamorphic age of 1918 ± 56 Ma. In addition, the zircons from a garnet amphibolite as a lens interbedded with marble in the Archean metamorphic complex named Wuhe group in the Bengbu uplift give a metamorphic U-Pb age of 1857 ± 19 Ma, and the zircons from Shimenshan deformed granite in the eastern margin of the Bengbu uplift give a magma crystallization U-Pb age of 2054 ± 22 Ma. Both the Xuzhou-Suzhou area and Bengbu uplift are located in the southeastern margin of the North China Craton. Therefore, these ages indicate that there is a Paleoproterozoic tectonic zone in the southeastern margin of the North China Craton, and its metamorphic and magmatic ages are consistent with those of the other three Paleoproterozoic tectonic zones in the North China Craton. In view of the large scale sinistral strike-slip movement occurred at the Mesozoic along the Tan-Lu fault zone, the position of the eastern Shandong area, which is a south section of the Paleoproterozoic Jiao-Liao-Ji Belt, was correlated to Xuzhou-Suzhou-Bengbu area prior to movement of the Tan-Lu fault zone. This suggests that the Xuzhou-Suzhou-Bengbu Paleoproterozoic tectonic zone might be a southwest extension of the Paleoproterozoic Jiao-Liao-Ji Belt. Supported by National Natural Science Foundation of China (Grant No. 40634023)  相似文献   

6.
The Hidaka Metamorphic Belt is a well-known example of island-arc crustal section, in which metamorphic grade increases westwards from unmetamorphosed sediment up to granulite facies. It is divided into lower (granulite to amphibolite facies) and upper (amphibolite to greenschist facies) metamorphic sequences. The metamorphic age of the belt was considered to be ~55 Ma, based on Rb – Sr whole-rock isochron ages for granulites and related S-type tonalities. However, zircons from the granulites in the lower sequence yield U – Pb ages of ~21 – 19 Ma, and a preliminary report on zircons from pelitic gneiss in the upper sequence gives a U – Pb age of ~40 Ma. In this paper we provide new zircon U – Pb ages from two pelitic gneisses in the upper sequence to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean 206Pb/238U ages from a biotite gneiss in the central area of the belt yield 39.6 ± 0.9 Ma for newly grown metamorphic rims and 53.1 ± 0.9 Ma for the youngest detrital cores. The ages of zircons from a cordierite–biotite gneiss in the southern area are 35.9 ± 0.7 Ma for metamorphic rims and 46.5 ± 2.8 Ma for the youngest detrital cores. These results indicate that metamorphism of the upper sequence took place at ~40 – 36 Ma, and that the sedimentary protolith was deposited after ~53 – 47 Ma. These metamorphic ages are consistent with the reported ages of ~37–36 Ma plutonic rocks in the upper sequence, but contrast with the ~21–19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude that the upper and lower metamorphic sequences developed independently but coupled with each other before ~19 Ma as a result of dextral reverse tectonic movement.  相似文献   

7.
In situ LA-ICPMS U-Pb, trace element, and Hf isotope data in zircon demonstrate a Carboniferous age for eclogite-facies metamorphism in Siluro-Devonian protoliths in the Huwan shear zone, Dabie Mountains, Central China. This age contrasts with the more prevailing Triassic age for high- to ultrahigh pressure (HP to UHP) metamorphism in the Qinling-Dabie-Sulu orogen. Metamorphic zircon in two eclogite samples from Sujiahe is characterized by low Th/U ratios, small negative Eu anomalies, flat HREE patterns, and low 176Lu/177Hf ratios. These geochemical signatures suggest that the zircon crystallized in the presence of garnet and in the absence of plagioclase feldspar. Furthermore, temperatures of ~ 655 and ~ 638 °C, calculated using the Ti content of zircon, are consistent with their formation during eclogite-facies metamorphism. The weighted mean 206Pb/238U age of 309 ± 4 Ma (2δ) for this zircon improves previous age estimates for eclogite-facies metamorphism in the Huwan shear zone, ranging from 420 to 220 Ma. Metamorphic zircon from one eclogite sample from Hujiawan, most likely formed during prograde metamorphism, yields an equivalent age estimate of 312 ± 11 Ma. Magmatic zircon cores in the three samples yield ages for the magmatic protoliths of the eclogites ranging from 420 ± 7 to 406 ± 5 Ma, and post-dating the middle Paleozoic collision of the North China and the Qinling terrain. The zircon crystals in the three eclogite samples display a large variation of εHf (t) values of ? 4.9 to 21.3. The metamorphic zircon overgrowths show the same range of εHf (t) values as those of the inherited magmatic crystal interiors. This suggests that the metamorphic zircon overgrowths may have formed by dissolution-reprecipitation of pre-existing magmatic zircon thereby preserving their original Hf isotopic composition. The high εHf (t) values suggest that the protoliths were derived from depleted mantle sources, most likely Paleotethyan oceanic crust; while the low εHf (t) values are attributed to crustal contamination. Some eclogites in the Huwan shear zone have a distinctive signature of continental crust most probably derived from the Yangtze Craton. The coexistence of Paleozoic oceanic crust and Neoproterozoic continental crust with similar metamorphic ages in the Huwan shear zone implies that Paleozoic Paleotethyan oceanic crust was produced within a marginal basin of the northern Yangtze Craton. The opening of the Paleo-Tethyan ocean was slightly younger than the collision of the North China Craton and the Qinling terrain during the Late Paleozoic in the Qinling-Dabie-Sulu orogen. Subduction of the Paleo-Tethyan oceanic crust and associated continental basement resulted in the 309 ± 2 Ma (2σ) eclogite-facies metamorphism in the Huwan shear zone. The subsequent Triassic continent-continent collision led to the final coalescence of the Yangtze and Sino-Korean cratons. Amalgamation of the Yangtze and North China cratons was, therefore, a multistage process extending over at least 200 Ma.  相似文献   

8.
The Hf isotope composition of original igneous or detrital zircons in high-grade metamorphic rocks can be used to trace protolith origin, but metamorphic effect on the Hf isotope composition of newly grown domains remains to evaluate. We report a detailed in situ combined study of intragrain U-Pb and Lu-Hf isotopes in zircons from granitic gneiss and eclogite in the Dabie orogen of China that experienced ultrahigh-pressure eclogite-facies metamorphism. The results show correlations in 206Pb / 238U age, initial Hf isotope composition, and Th / U and Lu / Hf ratios between the domains of different origins. The metamorphic domains are characterized by low Th / U and Lu / Hf ratios but high ?Hf(t) values relative to the igneous core and mantle of pre-metamorphic ages. Positive correlations are observed between Th / U and Lu / Hf ratios, pointing to the similar effect of metamorphism on both U-Th-Pb and Lu-Hf isotope systems. Thus the metamorphic domains are distinguished from the igneous core and mantle by their low Lu / Hf ratios that are less than 0.001 for the granitic gneiss and less than 0.0001 for the eclogite. Despite differences in both protolith age and geochemical source between granitic gneiss and eclogite, rim ?Hf(t) values are variably 3.1 to 13.5 greater than core ?Hf(t) values when calculated at timing of protolith formation. This indicates that the zircon overgrowth was associated with a metamorphic medium that has high 176Hf / 177Hf but low 176Lu / 177Hf ratios. While the metamorphic domains contain more radiogenic Hf isotopes than the original igneous core and mantle, their Lu / Hf ratios are significantly lower than those of core and mantle. Therefore, the metamorphic zircons acquired their initial Hf isotope ratios from metamorphic fluids that have high 176Hf / 177Hf ratios but low Lu / Hf ratios with sound variability depending on the Lu-Hf isotope compositions of pre-existing and co-precipitating phases.  相似文献   

9.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

10.
~~Metamorphic zircon from Xindian eclogite,Dabie Terrain: U-Pb age and oxygen isotope composition@E. Deloule$CRPG-CNRS Nancy,54501,France1. Vavra, G, Gebauer. D., Schmid. R. et al., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Tri-assic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122:337-358 2. Vavra, G, Schmid, R., Gebauer, D., Internal morphology, ha…  相似文献   

11.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

12.
Petrogenesis and dating of the Kangding complex,Sichuan Province   总被引:18,自引:1,他引:17  
The Kangding group, also known as the Kangding complex, includes granulites, amphibolites, felsic gneisses and gneissic granites that are distributed along a belt from Kangding, Mianning to Panzhihua, in Sichuan Province. The complex has long been thought to represent the crystalline basement of the Yangtze block. On the basis of U-Pb and Pb-Pb whole rock ages[1,2] , and of similarities in metamorphic fa-cies and association of metamorphic rocks with typical Archean high grade terrains, t…  相似文献   

13.
The Central Tianshan Tectonic Zone (CTTZ) is anarrow domain between an early Paleozoic southernTianshan passive continental margin and a late Paleo-zoic northern Tianshan arc zone, which is character-ized by the presence of numerous Precambrian meta-morphic basement blocks. Proterozoic granitoidgneisses and metamorphic sedimentary rocks,namely Xingxingxia and Kawabulag and Tianhugroups, are the most important lithological assem-blages in these metamorphic basement blocks, and alittle of …  相似文献   

14.
The Queershan composite granitic pluton is located in the north of the late Paleozoic Yidun arc collision-orogenic belt, eastern Tibetan Plateau. The main rock types are coarse-grained porphyritic alkalic-monzonite granite with minor fine-grained porphyritic monzogranite and granodiorite distributed in the eastern and southwestern regions. Here we report their zircon U-Pb ages and geo- chemical data. The intrusive contact relations indicate that granodiorite was formed earlier than the alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma). These suggest that the Queershan composite granitic pluton was formed through three-stage magmatic events. The alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma) are characterized by high SiO2(73.5%–77.7%), K2O+Na2O(6.9%–8.5%), Ga/Al ratios(2.6–3.4) and low Al2O3(11.8%–14.5%), CaO(0.25%–1.5%), MgO(0.18%–0.69%), negative Ba, Sr and Eu anomalies, showing A-type granite affinities. The granodiorite exhibits lower SiO2, P2O5 and K2O+Na2O contents, but higher Al2O3, CaO and MgO contents than alkalic-monzonite granite and monzogranite, showing I-type granite affinity. 176Hf/177 Hf ratios of the alkalic-monzonite granite and the monzogranite are 0.282692–0.282749 and 0.282685–0.282765, respectively, and with similar ?Hf(t) values(?0.56 to 1.43 and ?0.87 to 1.90 respectively). They also present similar TDM2 model ages(1.04–1.22 and 1.07–1.2 Ga respectively), indicating they may be sourced from a similar rock source, mostly like Kangding Complex. The homogeneity of the Hf isotopic compositions and the absence of the MMEs demonstrate that little depleted mantle materials have contributed to the source. We propose that the Mesoproterozoic crust materials of the Yangtze Craton exist beneath the Yidun arc terrane and support it was a dismembered part of the Yangtze Craton. The A-type granites of Queershan composite granitic pluton are most probably related to the closure of the Bangong-Nujiang Tethys ocean.  相似文献   

15.
Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U–Pb ages are reported from an ultrahigh‐temperature (UHT) spinel–orthopyroxene–garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan–Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950°C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P–T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 ± 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490–500 Ma. Since the granulite was metamorphosed at temperatures >900°C, exceeding the closure temperature of U–Pb system in zircon, a possible interpretation is that the 499 ± 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ~500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo‐Asian Ocean and associated accretion‐collision tectonics of the Siberian and Kazakhstan–Junggar Plates followed by rapid exhumation leading to decompression.  相似文献   

16.
The Taiping-Huangshan composite intrusion is a unique complex with characteristics changing from calc-alkaline (Taiping intrusion) to alkaline (Huangshan intrusion). Huangshan intrusion samples show a spectacular tetrad effect in their REE distribution patterns as well as non-CHARAC (charge-and-radius-controlled) trace element behavior, indicating a highly evolved late-stage magma component. This composite intrusion provides a rare opportunity to investigate the variance of tectonic setting and lithospheric thinning of the southeastern Yangtze Craton in late Mesozoic era. Zircon SHRIMP U-Pb analyses yield an emplacement age of 140.6±1.2 Ma for the Taiping intrusion, and ages of 127.7±1.3, 125.7±1.4, 125.1±1.5, and 125.2±5.5 Ma for four samples from the Huangshan intrusion respectively. The ages for four different phases of the Huangshan intrusion agree within their small analytical errors, indicating that the emplacement was in a short time. The Taiping and Huangshan intrusions are intimately associated, but there is about 15 Ma interval between their intrusion, and the magma characters change from calc-alkaline to alkaline without transition. This probably corresponds to lithospheric thinning of the southeastern Yangtze Craton. This event possibly happened from about 141 Ma (the emplacement age of the Taiping intrusion), to 128 Ma (start of emplacement of the Huangshan intrusion). The thinning mechanism is dominantly delamination.  相似文献   

17.
Tadashi  Usuki  Hiroshi  Kaiden  Keiji  Misawa  Kazuyuki  Shiraishi 《Island Arc》2006,15(4):503-516
Abstract   In order to define the timing of granulite facies metamorphism, sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses were performed on zircons of three pelitic granulites from the lower metamorphic sequence of the Hidaka Metamorphic Belt, southern central Hokkaido, Japan. Both rounded and prismatic zircons were found in the granulite samples. The rounded zircons had thin (10–20 µm) concentric overgrowth rims on detrital cores, while the prismatic zircons did not have detrital cores. Both the overgrowth rims on the rounded zircons and the entire prismatic zircons were formed under granulite facies metamorphism and consistently yield Latest Oligocene–Early Miocene ages (23.7 ± 0.4 Ma to 17.2 ± 0.5 Ma; 206Pb/ 238U ages ( n  = 31) with low Th/U ratios, mostly <0.1). The internal structure of zircons and their SHRIMP U-Pb ages provide strong evidence in support of the granulite facies event occurring during the Latest Oligocene-Early Miocene. The detrital cores of rounded zircons show a huge variety of ages; Mesoarchean to Paleoproterozoic, Paleozoic to Mesozoic and Paleogene. The interior and marginal portions of the Eurasian continent including cratonic areas are suggested for their source provenances. These wide variations in age suggest that the protolith of the granulites of the lower metamorphic sequence were deposited near the trench of the Eurasian continental margin during Paleogene. The protolith of the lower metamorphic sequence of the Hidaka metamorphic belt was thrust under the upper metamorphic sequence, which had already been metamorphosed in early Paleogene. The Latest Oligocene-Early Miocene Hidaka high-temperature metamorphic event is presumed to have been caused by asthenospheric upwelling during back-arc rifting of the Kuril and Japan basins.  相似文献   

18.
Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by thein situSHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.  相似文献   

19.
We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm(for small grains) or 1 μm×9 μm(for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to(2σ) as158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study,with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite.The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.  相似文献   

20.

Zircon grains were selected from two types of ultrahigh-pressure (UHP) eclogites, coarse-grained phengite eclogite and fine-grained massive eclogite, in the Yukahe area, the western part of the North Qaidam UHP metamorphic belt. Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector, planar or misty internal textures on the cathodoluminescence (CL) images. The contents of REE and HREE of the core parts of grains range from 173 to 1680 μg/g and 170 to 1634 μg/g, respectively, in phengite eclogite, and from 37 to 2640 μg/g and 25.7 to 1824 μg/g, respectively, in massive eclogite. The core parts exhibit HREE-enriched patterns, representing the residual zircons of protolith of the Yukahe eclogite. The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts. They vary from 13.1 to 89.5 μg/g and 12.5 to 85.7 μg/g, respectively, in phengite eclogite, and from 9.92 to 45.8 μg/g and 9.18 to 43.8 μg/g, respectively, in massive eclogite. Negative Eu anomalies and Th/U ratios decrease from core to rim. Positive Eu anomalies are shown in some grains. These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage, and the zircons formed under eclogite facies conditions. LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783–793 Ma and 748–759 Ma in the Neo-proterozoic. The weighted mean age of the metamorphic ages (434±2 Ma) may represent the UHP metamorphic age of the Yukahe eclogites. The metamorphic age is well consistent with their direct country rocks of gneisses (431±3 Ma and 432±19 Ma) and coesite-bearing pelitic schist in the Yematan UHP eclogite section (423–440 Ma). These age data together with field observation and lithology, allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic, therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号