首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Abstract The amphibolites occur sporadically as thin layers and blocks throughout the Sulu Terrane, eastern China. All analyzed amphibolite from outcrop and drill cores from prepilot drill hole CCSD‐PP1 and CCSD‐PP2, Chinese Continental Scientific Drilling Project in the Sulu Terrane, are retrograded eclogites overprinted by amphibolite‐facies retrograde metamorphism, with characteristic mineral assemblages of amphibole + plagioclase + epidote ± quartz ± biotite ± ilmenite ± titanite. However, coesite and coesite‐bearing ultrahigh‐pressure (UHP) mineral assemblages are identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from these amphibolites. In general, coesite and other UHP mineral inclusions are preserved in the cores and mantles of zircons, whereas quartz inclusions occur in the rims of the same zircons. The UHP mineral assemblages consist mainly of coesite + garnet + omphacite + rutile, coesite + garnet + omphacite, coesite + garnet + omphacite + phengite + rutile + apatite, coesite + omphacite + rutile and coesite + magnesite. Compositions of analyzed mineral inclusions are very similar to those of matrix minerals from Sulu eclogites. These UHP mineral inclusion assemblages yield temperatures of 631–780°C and pressures of ≥2.8 × 103 MPa, representing the P–T conditions of peak metamorphism of these rocks, which are consistent with those (T = 642–726°C; P ≥ 2.8 × 103 MPa) deduced from adjacent eclogites. These data indicate that the amphibolites are the retrogressive products of UHP eclogites.  相似文献   

2.
The timing of ultra-high pressure (UHP) metamorphism has been difficult to determine because of a lack of age constraints on crucial events, especially those occurring on the prograde path. New Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Pb age and rare-earth element (REE) data of zircon are presented for UHP metamorphic rocks (eclogite, garnet peridotite, garnet pyroxenite, jadeite quartzite and garnet gneiss) along the Dabie–Sulu UHP complex of China. With multiphase metamorphic textures and index mineral inclusions within zircon, the Dabie data define three episodes of eclogite-facies metamorphism, best estimated at 242.1 ± 0.4 Ma, 227.2 ± 0.8 Ma and 219.8 ± 0.8 Ma. Eclogite-facies zircons of the Sulu UHP complex grew during two major episodes at 242.7 ± 1.2 and 227.5 ± 1.3 Ma, which are indistinguishable from corresponding events in the Dabie UHP complex. A pre-eclogite metamorphic phase at 244.0 ± 2.6 Ma was obtained from two Sulu zircon samples which contain low pressure–temperature (plagioclase, stable below the quartz/Ab transformation) and hydrous (e.g., amphibole, stable below  2.5 Gpa) mineral inclusions. In terms of Fe–Mg exchange of trapped garnet–clinopyroxene pairs within zircon domains, we are able to determine the Pressure–Temperature (PT) conditions for a specific episode of metamorphic zircon growth. We suggest that mineral phase transformations and associated dehydration led to episodic eclogite-facies zircon growth during UHP metamorphism ( 2.7 Gpa) began at 242.2 ± 0.4 Ma (n = 74, pooling the Dabie–Sulu data), followed by peak UHP metamorphism (>  4 Gpa) at 227.3 ± 0.7 Ma (n = 72), before exhumation (<  220 Ma) to quartz stability (~ 1.8 Gpa). The Dabie–Sulu UHP metamorphism lasted for about 15 Ma, equivalent to a minimum subduction rate of 6 mm/year for the descending continental crust.  相似文献   

3.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

4.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

5.
U–Pb ages of detrital zircons and white mica K–Ar ages are obtained from two psammitic schists from the western and eastern units of the Sanbagawa Metamorphic Belt located in the Sakuma–Tenryu area. The detrital zircons in the sample from the western unit (T1) show an age cluster around 95 Ma, and the youngest age in the detrital zircons is 94.0 ± 0.6 Ma. The detrital zircons in the sample from the eastern unit (T5) show a main age cluster in the Late Cretaceous with some older ages, and the youngest age in the detrital zircons is 72.8 ± 0.9 Ma. The youngest zircon ages restrict the older limit of the depositional ages of each sample. White mica K–Ar ages of T1 and T5 are 69.8 ± 1.5 Ma and 56.1 ± 1.2 Ma, respectively, which indicate the age of exhumation and restrict the younger limit on the depositional age of each sample. The results show that the western and eastern units were different in their depositional and exhumation ages, suggesting the episodic subduction and exhumation of the Sanbagawa Belt in the Sakuma–Tenryu area. These results also suggest simultaneous existence of subduction and exhumation paths of metamorphic rocks in the high‐P/T Sanbagawa Metamorphic Belt.  相似文献   

6.
Abstract In the first extensive, systematic study of inclusions in zircons from ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks of the Kokchetav Massif of Kazakhstan (separated from 232 rock samples from all representative lithologies and geographic regions), we identified graphite, quartz, garnet, phengite, phlogopite, rutile, albite, K-feldspar, amphibole, zoisite, kyanite, calcite, dolomite, apatite, monazite, omphacite and jadeite, as well as the diagnostic UHP metamorphic minerals (i.e. microdiamond and coesite) by laser Raman spectroscopy. In some instances, coesite + quartz and diamond + graphite occur together in a single rock sample, and inclusion aggregates also comprise polycrystalline diamond crystals overgrowing graphite. Secondary electron microscope and cathodoluminescence studies reveal that many zircons display distinct zonation textures, which comprise core and wide mantle, each with distinctive inclusion microassemblages. Pre-UHP metamorphic minerals such as graphite, quartz, phengite and apatite are common in the core, whereas diamond, coesite, garnet and jadeite occupy the mantle. The inclusions in core are irrelevant to the UHP metamorphism. The zircon core is of detrital or relatively low-grade metamorphic origin, whereas the mantle is of HP to UHP metamorphic origin. The zonal arrangement of inclusions and the presence of coesite and diamond without back-reaction imply that aqueous fluids were low to absent within the zircons during both prograde and retrograde metamorphism, and that the zircon preserves a prograde pressure–temperature record of the Kokchetav metamorphism which, elsewhere, has been more or less obliterated in the host rock.  相似文献   

7.
U–Pb geochronological, trace-element and Lu–Hf isotopic studies have been made on zircons from ultrahigh-pressure (UHP) mafic eclogite from the Kumdy-Kol area, one of the diamond-facies domains of the Kokchetav Massif (northern Kazakhstan). The peak eclogitic assemblage equilibrated at > 900 °C, whereas the bulk sample composition displays light rare-earth element (LREE) and Th depletion evident of partial melting. Zircons from the eclogite are represented by exclusively newly formed metamorphic grains and have U–Pb age spread over 533–459 Ma, thus ranging from the time of peak subduction burial to that of the late post-orogenic collapse. The major zircon group with concordant age estimates have a concordia age of 508.1 ±4.4 Ma, which corresponds to exhumation of the eclogite-bearing UHP crustal slice to granulite- or amphibolite-facies depths. This may indicate potentially incoherent exhumation of different crustal blocks within a single Kumdy-Kol UHP domain. Model Hf isotopic characteristics of zircons (εHf(t) +1.5 to +7.8, Neoproterozoic model Hf ages of 1.02–0.79 Ga) closely resemble the whole-rock values of the Kumdy-Kol eclogites and likely reflect in situ derivation of HFSE source for newly formed grains. The ages coupled with geochemical systematics of zircons confirm that predominantly late zircon growth occurred in Th–LREE-depleted eclogitic assemblage, that experienced incipient melting and monazite dissolution in melt at granulite-facies depths, followed by amphibolite-facies rehydration during late-stage exhumation-related retrogression.  相似文献   

8.

Zircon grains were selected from two types of ultrahigh-pressure (UHP) eclogites, coarse-grained phengite eclogite and fine-grained massive eclogite, in the Yukahe area, the western part of the North Qaidam UHP metamorphic belt. Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector, planar or misty internal textures on the cathodoluminescence (CL) images. The contents of REE and HREE of the core parts of grains range from 173 to 1680 μg/g and 170 to 1634 μg/g, respectively, in phengite eclogite, and from 37 to 2640 μg/g and 25.7 to 1824 μg/g, respectively, in massive eclogite. The core parts exhibit HREE-enriched patterns, representing the residual zircons of protolith of the Yukahe eclogite. The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts. They vary from 13.1 to 89.5 μg/g and 12.5 to 85.7 μg/g, respectively, in phengite eclogite, and from 9.92 to 45.8 μg/g and 9.18 to 43.8 μg/g, respectively, in massive eclogite. Negative Eu anomalies and Th/U ratios decrease from core to rim. Positive Eu anomalies are shown in some grains. These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage, and the zircons formed under eclogite facies conditions. LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783–793 Ma and 748–759 Ma in the Neo-proterozoic. The weighted mean age of the metamorphic ages (434±2 Ma) may represent the UHP metamorphic age of the Yukahe eclogites. The metamorphic age is well consistent with their direct country rocks of gneisses (431±3 Ma and 432±19 Ma) and coesite-bearing pelitic schist in the Yematan UHP eclogite section (423–440 Ma). These age data together with field observation and lithology, allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic, therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.

  相似文献   

9.
Abstract Ultrahigh-pressure metamorphic (UHPM) rocks of the Kokchetav Massif of Kazakhstan contain metamorphic microdiamond and coesite inclusions inside rigid capsules such as garnet and zircon. Precambrian protoliths of the UHPM rocks were metamorphosed at around 530 Ma, at pressures of about 7 GPa, which suggests that crustal protoliths were subducted to depths of over 200 km. Primary UHPM minerals are poorly preserved due to partial obliteration by subsequent Barrovian overprint during exhumation and later collision events in Caledonian times. We report the results of detailed mapping of the Kokchetav Massif and use structural data to propose intrusion and exhumation mechanisms for the UHPM rocks. Detailed mapping revealed that many subvertical structures in the ultrahigh-pressure–high-pressure (UHP–HP) units were formed due to later folding. The primary structure appears to be subhorizontal and the total thickness of the UHP rocks is estimated at around 2 km. The first order structure is sandwich-like; that is, the UHP–HP units are separated from underlying low-P metamorphic rocks of the Daulet Series and from feebly metamorphosed to unmetamorphosed sedimentary strata on the top by subhorizontal faults. Kinematic indicators show top-to-the-south sense of shear along the top, and top-to-the-north displacement along the bottom boundaries. These shear senses, together with the observed metamorphic gradients, suggest that the thin UHPM sheet was extruded toward the north. We consider wedge extrusion to have been the most effective mechanism for the exhumation of the UHPM rocks.  相似文献   

10.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

11.
An introduction to ultrahigh-pressure metamorphism   总被引:6,自引:0,他引:6  
Abstract Ultrahigh-pressure (UHP) metamorphism refers to mineralogical and structural readjustment of supracrustal protoliths and associated mafic-ultramafic rocks at mantle pressures greater than ∼ 25 kbar (80-90 km). Typical products include metapelite, quartzite, marble, granulite, eclogite, paragneiss and orthogneiss; minor mafic and ultramafic rocks occur as eclogitic-ultramafic layers or blocks of various dimensions within the supracrustal rocks. For appropriate bulk compositions, metamorphism at great depths produces coesite, microdiamond and other characteristic UHP minerals with unusual compositions. Thus far, at least seven coesite-bearing eclogitic terranes and three diamond-bearing UHP regions have been documented. All lie within major continental collision belts in Eurasia, have similar supracrustal protoliths and metamorphic assemblages, occur in long, discontinuous belts that may extend several hundred kilometers or more, and typically are associated with contemporaneous high-P blueschist belts. This paper defines the P-T regimes of UHP metamorphism and describes mineralogical, petrological and tectonic characteristics for a few representative UHP terranes including the western gneiss region of Norway, the Dora Maira massif of the western Alps, the Dabie Mountains and the Su-Lu region of east-central China, and the Kokchetav massif of the former USSR. Prograde P-T paths for coesite-bearing eclogites require abnormally low geothermal gradients (approximately 7°C/km) that can be accomplished only by subduction of cold, oceanic crust-capped lithosphere ± pelagic sediments or an old, cold continent. The preservation of coesite inclusions in garnet, zircon, omphacite, kyanite and epidote, and microdiamond inclusions in garnet and zircon during exhumation of an UHP terrane requires either an extraordinarily fast rate of denudation (up to 10 cm/year) or continuous refrigeration in an extensional regime (retreating subduction zone).  相似文献   

12.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

13.
Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U–Pb ages are reported from an ultrahigh‐temperature (UHT) spinel–orthopyroxene–garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan–Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950°C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P–T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 ± 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490–500 Ma. Since the granulite was metamorphosed at temperatures >900°C, exceeding the closure temperature of U–Pb system in zircon, a possible interpretation is that the 499 ± 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ~500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo‐Asian Ocean and associated accretion‐collision tectonics of the Siberian and Kazakhstan–Junggar Plates followed by rapid exhumation leading to decompression.  相似文献   

14.
Abstract The chemical Th-U-total Pb isochron method (CHIME) was applied to determine the age of monazite and thorite in five gneisses and zircon in an ultra high-pressure (UHP) phengite schist from the Su-Lu region, eastern China. The CHIME ages and isotopic ages reported in the literature show that gneisses in the Su-Lu region are divided into middle Proterozoic (1500–1720 Ma) and Mesozoic (100–250 Ma) groups. The Proterozoic group includes paragneiss and orthogneiss of the amphibolite-granulite facies, and their protolith age is late Archean-early Proterozoic. The Mesozoic group is mainly composed of orthogneiss of the greenschist-epidote amphibolite facies, and the protolith age is Middle Paleozoic-Early Proterozoic. The Proterozoic and Mesozoic gneisses occupy northern and southern areas of the Su-Lu region, respectively, which are divided by a major Wulian-Qingdao-Yantai fault. Ultra high-pressure metamorphic rocks occur as blocks in the Mesozoic gneisses, and form a UHP complex.
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses.  相似文献   

15.
Within the north‐eastern part of the Palawan Continental Terrane, which forms the south‐western part of the Philippine archipelago, several metamorphic complexes are exposed that are considered to be rifted parts of the Asian margin in South‐East China. The protolith age(s) and correlations of these complexes are contentious. The largest metamorphic complex of the Palawan Continental Terrane comprises the Mindoro Metamorphics. The north‐eastern part of this metamorphic complex has recently been found to be composed of protoliths of Late Carboniferous to Late Permian protolith age. However, meta‐sediments exposed at the westernmost tip and close to the southern boundary of the exposure of the Mindoro Metamorphics contain detrital zircons and with U–Pb ages, determined by LA–ICP–MS, in the range 22–56 Ma. In addition, zircons as young as 112 Ma were found in a sample of the Romblon Metamorphics in Tablas. As the youngest detrital zircons provide an upper age limit for the time of deposition in meta‐sediments, these results suggest that the Mindoro and Romblon Metamorphics comprise protoliths of variable age: Late Carboniferous to Late Permian in NE Mindoro; Eocene or later in NW Mindoro; Miocene at the southern margin of the Mindoro metamorphics; and Cretaceous or later on Tablas. The presence of non‐metamorphic sediments of Late Eocene to Early Oligocene age in Mindoro (Lasala Formation), which are older than the youngest metasediments, suggests that metamorphism of the young meta‐sediments of Mindoro is the result of the collision of the Palawan Continental terrane with the Philippine Mobile Belt in Late Miocene. Similarities of the age spectra of zircons from the Eocene to Miocene metamorphics with the Eocene to Early Miocene Lasala Formation suggest that the protoliths of the young metamorphics may be equivalents of the Lasala Formation or were recycled from the Lasala Formation.  相似文献   

16.
The Hidaka Metamorphic Belt is a well-known example of island-arc crustal section, in which metamorphic grade increases westwards from unmetamorphosed sediment up to granulite facies. It is divided into lower (granulite to amphibolite facies) and upper (amphibolite to greenschist facies) metamorphic sequences. The metamorphic age of the belt was considered to be ~55 Ma, based on Rb – Sr whole-rock isochron ages for granulites and related S-type tonalities. However, zircons from the granulites in the lower sequence yield U – Pb ages of ~21 – 19 Ma, and a preliminary report on zircons from pelitic gneiss in the upper sequence gives a U – Pb age of ~40 Ma. In this paper we provide new zircon U – Pb ages from two pelitic gneisses in the upper sequence to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean 206Pb/238U ages from a biotite gneiss in the central area of the belt yield 39.6 ± 0.9 Ma for newly grown metamorphic rims and 53.1 ± 0.9 Ma for the youngest detrital cores. The ages of zircons from a cordierite–biotite gneiss in the southern area are 35.9 ± 0.7 Ma for metamorphic rims and 46.5 ± 2.8 Ma for the youngest detrital cores. These results indicate that metamorphism of the upper sequence took place at ~40 – 36 Ma, and that the sedimentary protolith was deposited after ~53 – 47 Ma. These metamorphic ages are consistent with the reported ages of ~37–36 Ma plutonic rocks in the upper sequence, but contrast with the ~21–19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude that the upper and lower metamorphic sequences developed independently but coupled with each other before ~19 Ma as a result of dextral reverse tectonic movement.  相似文献   

17.
A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision.  相似文献   

18.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

19.
Tadashi  Usuki  Hiroshi  Kaiden  Keiji  Misawa  Kazuyuki  Shiraishi 《Island Arc》2006,15(4):503-516
Abstract   In order to define the timing of granulite facies metamorphism, sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses were performed on zircons of three pelitic granulites from the lower metamorphic sequence of the Hidaka Metamorphic Belt, southern central Hokkaido, Japan. Both rounded and prismatic zircons were found in the granulite samples. The rounded zircons had thin (10–20 µm) concentric overgrowth rims on detrital cores, while the prismatic zircons did not have detrital cores. Both the overgrowth rims on the rounded zircons and the entire prismatic zircons were formed under granulite facies metamorphism and consistently yield Latest Oligocene–Early Miocene ages (23.7 ± 0.4 Ma to 17.2 ± 0.5 Ma; 206Pb/ 238U ages ( n  = 31) with low Th/U ratios, mostly <0.1). The internal structure of zircons and their SHRIMP U-Pb ages provide strong evidence in support of the granulite facies event occurring during the Latest Oligocene-Early Miocene. The detrital cores of rounded zircons show a huge variety of ages; Mesoarchean to Paleoproterozoic, Paleozoic to Mesozoic and Paleogene. The interior and marginal portions of the Eurasian continent including cratonic areas are suggested for their source provenances. These wide variations in age suggest that the protolith of the granulites of the lower metamorphic sequence were deposited near the trench of the Eurasian continental margin during Paleogene. The protolith of the lower metamorphic sequence of the Hidaka metamorphic belt was thrust under the upper metamorphic sequence, which had already been metamorphosed in early Paleogene. The Latest Oligocene-Early Miocene Hidaka high-temperature metamorphic event is presumed to have been caused by asthenospheric upwelling during back-arc rifting of the Kuril and Japan basins.  相似文献   

20.
This study presents the chronological evolution of the upper amphibolite facies Orue Unit in NW Namibia. Metasedimentary and meta-igneous rocks of the Orue Unit were investigated using the Pb–Pb stepwise leaching technique on garnet and rutile, U–Pb multi-grain analysis on rutile, Sm–Nd–Lu–Hf leaching technique on garnet, SHRIMP analysis on zircon and Ar–Ar dating on amphibole. Each of these techniques pertains to different processes that occurred before, during, or after the metamorphic peak. Our age data can be integrated with petrological constraints to provide a more complete understanding of the metamorphic cycle. Our pre-peak metamorphic zircon ages, peak metamorphic garnet ages and peak to late peak metamorphic amphibole 39Ar–40Ar ages bracket the upper amphibolite facies metamorphic event including hydration or dehydration processes into a time span of only ca. 20 Ma. The age data obtained by peak metamorphic mineral analyses cluster around 1340–1320 Ma. Based on age data and field observation, we interpret the upper amphibolite facies metamorphism as a large-scale regional mid-crustal event. Spot analyses of inherited zircon cores obtained by SHRIMP reflect the sedimentary origin of the respective rocks of the Orue Unit and derivation from Palaeoproterozoic protoliths. The metamorphic rocks south of the anorthositic Kunene Intrusive Complex (KIC) have previously been ascribed to the Palaeoproterozoic Epupa Complex at the SW margin of the Congo craton and were thus thought to be older than the Mesoproterozoic KIC. Our data show that the high-grade metamorphic overprint took place 30–50 Ma after emplacement of the KIC. Rutile growth ages of 1248 Ma in one sample reflect fluid activity which seems to be a local phenomenon since there is no other evidence of geological activity throughout the Orue Unit at that time. The rutile ages predate the emplacement of satellite intrusions in that area by 30 Ma and there is no causal relation between these two events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号