首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Zircon grains were selected from two types of ultrahigh-pressure (UHP) eclogites, coarse-grained phengite eclogite and fine-grained massive eclogite, in the Yukahe area, the western part of the North Qaidam UHP metamorphic belt. Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector, planar or misty internal textures on the cathodoluminescence (CL) images. The contents of REE and HREE of the core parts of grains range from 173 to 1680 μg/g and 170 to 1634 μg/g, respectively, in phengite eclogite, and from 37 to 2640 μg/g and 25.7 to 1824 μg/g, respectively, in massive eclogite. The core parts exhibit HREE-enriched patterns, representing the residual zircons of protolith of the Yukahe eclogite. The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts. They vary from 13.1 to 89.5 μg/g and 12.5 to 85.7 μg/g, respectively, in phengite eclogite, and from 9.92 to 45.8 μg/g and 9.18 to 43.8 μg/g, respectively, in massive eclogite. Negative Eu anomalies and Th/U ratios decrease from core to rim. Positive Eu anomalies are shown in some grains. These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage, and the zircons formed under eclogite facies conditions. LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783–793 Ma and 748–759 Ma in the Neo-proterozoic. The weighted mean age of the metamorphic ages (434±2 Ma) may represent the UHP metamorphic age of the Yukahe eclogites. The metamorphic age is well consistent with their direct country rocks of gneisses (431±3 Ma and 432±19 Ma) and coesite-bearing pelitic schist in the Yematan UHP eclogite section (423–440 Ma). These age data together with field observation and lithology, allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic, therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.

  相似文献   

2.
Laser Raman spectroscopy and cathodoluminescence (CL) image reveal that zircons separated from paragneisses in the southwestern Sulu terrane (eastern China) preserve multi-stage mineral assemblages in different zircon domains. In the same paragneiss zircon sample, some zircon grains retain inherited (detrital) cores with abundant low-pressure mineral inclusions of Qtz + Phe + Ap + impurities and Qtz + Phe + impurities. The ultrahigh-pressure (UHP) metamorphic overgrowths mantles of these zircons preserve Coe, Coe + Phe and other UHP mineral inclusions, indicating that these inherited (detrital) zircons from protoliths experienced metamorphic recrystallization during the Sulu UHP metamorphic event. However, other zircon grains preserve UHP mineral inclusions of Coe, Coe + Ap and Coe + Phe in the cores and mantles, whereas the outmost rims contain quartz (Qtz) and other low-pressure mineral inclusions. These phenomena prove that the second group zircons were crystallized at UHP metamorphic stage and overpr  相似文献   

3.
~~Metamorphic zircon from Xindian eclogite,Dabie Terrain: U-Pb age and oxygen isotope composition@E. Deloule$CRPG-CNRS Nancy,54501,France1. Vavra, G, Gebauer. D., Schmid. R. et al., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Tri-assic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122:337-358 2. Vavra, G, Schmid, R., Gebauer, D., Internal morphology, ha…  相似文献   

4.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

5.
The timing of ultra-high pressure (UHP) metamorphism has been difficult to determine because of a lack of age constraints on crucial events, especially those occurring on the prograde path. New Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Pb age and rare-earth element (REE) data of zircon are presented for UHP metamorphic rocks (eclogite, garnet peridotite, garnet pyroxenite, jadeite quartzite and garnet gneiss) along the Dabie–Sulu UHP complex of China. With multiphase metamorphic textures and index mineral inclusions within zircon, the Dabie data define three episodes of eclogite-facies metamorphism, best estimated at 242.1 ± 0.4 Ma, 227.2 ± 0.8 Ma and 219.8 ± 0.8 Ma. Eclogite-facies zircons of the Sulu UHP complex grew during two major episodes at 242.7 ± 1.2 and 227.5 ± 1.3 Ma, which are indistinguishable from corresponding events in the Dabie UHP complex. A pre-eclogite metamorphic phase at 244.0 ± 2.6 Ma was obtained from two Sulu zircon samples which contain low pressure–temperature (plagioclase, stable below the quartz/Ab transformation) and hydrous (e.g., amphibole, stable below  2.5 Gpa) mineral inclusions. In terms of Fe–Mg exchange of trapped garnet–clinopyroxene pairs within zircon domains, we are able to determine the Pressure–Temperature (PT) conditions for a specific episode of metamorphic zircon growth. We suggest that mineral phase transformations and associated dehydration led to episodic eclogite-facies zircon growth during UHP metamorphism ( 2.7 Gpa) began at 242.2 ± 0.4 Ma (n = 74, pooling the Dabie–Sulu data), followed by peak UHP metamorphism (>  4 Gpa) at 227.3 ± 0.7 Ma (n = 72), before exhumation (<  220 Ma) to quartz stability (~ 1.8 Gpa). The Dabie–Sulu UHP metamorphism lasted for about 15 Ma, equivalent to a minimum subduction rate of 6 mm/year for the descending continental crust.  相似文献   

6.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

7.
Researches over the last 20 years show that the orogenic belt remains rather active after plate colli-sion[1,2]. A complete orogenic cycle in the last period of the Wilson cycle can be defined by three stages of development[3]: (1) horizontal contraction and crustal thickening due to collision, as well as formation of topography and the crustal and lithospheric root; (2) eclogite facies metamorphism of the crustal root; and (3) delamination of the crustal root or lithospheric mantle, extension…  相似文献   

8.
Supracrustal rocks around the North Pole Dome area, Western Australia, provide valuable information regarding early records of the evolution of crustal processes, surface environments, and biosphere. Owing to the occurrence of the oldest known microfossils, the successions at the North Pole Dome area have attracted interest from many researchers. The Paleoarchean successions (Warrawoona Group) mainly comprise mafic‐ultramafic greenstones with intercalated cherts and felsic lavas. Age constraints on the sediments have been mainly based on zircon U–Pb geochronology. However, many zircon grains have suffered from metamictization and contain anomalously high contents of common Pb, which makes interpretation of the U–Pb data complicated. In order to provide more convincing chronological constraints, an U–Pb Concordia age is widely accepted as the best estimate. Most zircons separated from two adamellites also suffered from severe metamictization. In our analyses, less metamictized domains were selected using a pre‐ablation technique in conjunction with elemental mapping, and then their U–Pb isotopic compositions were determined with a laser ablation inductively coupled plasma mass spectrometry. Most analyzed domains contained certain amounts of common Pb (204Pb/206Pb > 0.000 1), whereas three and five U–Pb data points with less common Pb (204Pb/206Pb < 0.000 1) were obtained. These U–Pb datasets yielded U–Pb Concordia ages of ca 3 445 Ma and 3 454 Ma, respectively. These ages represent the timing of the adamellite intrusion, and constrain the minimum depositional age of the Warrawoona Group. In addition, a single xenocrystic zircon grain showed a 207Pb/206Pb age of ca 3 545 Ma, supporting the idea that the sialic basement of the Pilbara Craton existed prior to 3 500 Ma. The in situ U–Pb zircon dating combined with the pre‐ablation technique has the potentials to identify non‐metamictized parts and to yield precise and accurate geochronological data even from partially metamictized zircons.  相似文献   

9.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

10.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

11.
In-situ Hf isotope analyses and U–Pb dates were obtained by laser ablation-MC-ICP-MS for a zircon-bearing mantle eclogite xenolith from the diamondiferous Jericho kimberlite located within the Archean Slave Province (Nunavut), Canada. The U–Pb zircon results yield a wide range of ages (2.0 to 0.8 Ga) indicating a complex geological history. Of importance, one zircon yields a U–Pb upper intercept date of 1989 ± 67 Ma, providing a new minimum age constraint for zircon crystallization and eclogite formation. In contrast, Hf isotope systematics for the same zircons display an intriguing uniformity, and corresponding Hf depleted mantle model ages range between 2.1 ± 0.1 and 2.3 ± 0.1 Ga; the youngest Hf model age is within error to the oldest U–Pb date.

The Jericho eclogites have previously been interpreted as representing remnants of metamorphosed oceanic crust, and their formation related to Paleoproterozoic subduction regimes along the western margin of the Archean Slave craton during the Wopmay orogeny. Hf isotope compositions and U–Pb results for the Jericho zircons reported here are in good agreement with a Paleoproterozoic subduction model, suggesting that generation of oceanic crust and eclogite formation occurred between 2.0 and 2.1 Ga. The slightly older Hf depleted mantle model ages (2.1 to 2.3 Ga) may be reconciled with this model by invoking mixing between ‘crustal’-derived Hf from sediments and more radiogenic Hf associated with the oceanic crust during the 2 Ga subduction event. This results in intermediate Hf isotope compositions for the Jericho zircons that yield ‘fictitiously’ older Hf model ages.  相似文献   


12.
Here we report an integrated study of zircon U-Pb age and Hf isotope composition for a gneiss sample from the Kongling terrain in the Yangtze Craton. CL imaging reveals that most zircons are magmatic, and a few of them have thin metamorphic rims. The magmatic zircons gave a weighted mean U-Pb age of 3218±13 Ma, indicating the gneiss is the oldest basement rock in the Yangtze Craton found to date. They have εHf(t) value of -2.33±0.51,and two-stage Hf model age of 3679±49 Ma,indicating that the gneiss was der...  相似文献   

13.
A U-Pb-He double-dating method is applied to detrital zircons with core-rim structure from the Ganges River in order to determine average short- and long-term exhumation rates for the Himalayas. Long-term rates are calculated from the U/Pb ages of metamorphic rims of the grains that formed during the Himalayan orogeny and their crystallization temperatures, which are calculated from the Ti-in-zircon thermometer. Short-term rates are calculated from(U-Th)/He ages of the grains with appropriate closure temperatures. The results show that short-term rates for the Himalayas, which range from 0.70 ± 0.09 to 2.67 ± 0.40 km/Myr and average 1.75 ± 0.59(1±) km/Myr, are higher and more varied than the long-term rates, which range from 0.84 ± 0.16 to 1.85 ± 0.35 km/Myr and average 1.26 ± 0.25(1±) km/Myr. The differences between the long-term and short-term rates can be attributed to continuous exhumation of the host rocks in different mechanisms in continental collision orogen. The U/Pb ages of 44.0 ± 3.7 to 18.3 ± 0.5 Ma for the zircon rims indicate a protracted episode of ~25 Myr for regional metamorphism of the host rocks at deeper crust, whereas the(U-Th)/He ages of 42.2 ± 1.8 to 1.3 ± 0.2 Ma for the zircon grains represent a protracted period of ~40 Myr for exposure of the host rocks to shallower crustal level. In particular, the oldest(U-Th)/He ages of the zircon grains are close to the oldest U/Pb ages for the rims, indicating that some parcels of the rocks that contain zircons were rapidly exhumed from deep to shallow levels in the stage of collisional orogeny. On the other hand, some parcels of the rocks may have been carried upwards by thrust faults in the post-collisional stage. The parcels could be carried upwards by the thrust faults that steepen as they near the surface, or by transient movement faults so that areas of rapid exhumation became areas of slow exhumation and visa versa on a time scale of a few Myr in order to maintain the continuous exhumation. In this regard, the Ganges River must be preferentially sampling areas that are currently undergoing above average rates of uplift.  相似文献   

14.
The NE-trended Mesozoic granodioritic intrusions are spatially and temporally associated with the copper multi-metal mineralization in southeastern Hunan Province, South China. U-Pb dating result of single-grained zircons of four samples respectively from Shuikoushan, Baoshan, western Tongshanling and eastern Tongshanling intrusions reveals that their crystallization age spans a range from 172 Ma to 181 Ma, which also represents the oldest age of the regional copper multi-metal mineralization. Some of the zircon grains give an upper intercept age of about 1753 Ma and 207Pb/206Pb apparent age of (1752 ± 4) Ma, implying the involvement of the pre-Cambrian metamorphic (possible Middle Proterozoic) basement in their genesis. The presence of such a kind of zircon grains in these granodiorites indicates either that the parental magmas were assimilated by basement rocks during magma ascent or that lower/middle crustal rocks were one of the important components during the melting process.  相似文献   

15.
The Bangong–Nujiang suture (BNS) between the Lhasa and Qiangtang terranes is an important boundary and its petrogenesis is controversial. Diabase from the accretionary prism in the southern Qiangtang terrane yields a zircon U–Pb age of 181.3 ± 1.4 Ma. All the diabases show tholeiitic basalt compositions, gentle enrichment patters of light rare earth elements (REE), variable enrichment in incompatible element concentrations (e.g. Th and Rb), and no anomaly in high field strength elements (e.g. Nb and Ta), similar to that of enriched mid‐ocean ridge basalt (E‐MORB). They have relatively homogeneous whole rock Nd (εNd(t) = 7.3–9.1) and zircon Hf–O isotopic compositions (εHf(t) = 14.8–16.1, and δ18O = 4.57–6.12‰), possibly indicating melting of the depleted mantle and no significant crustal contamination during the petrogenesis. The element variations suggest that the diabases were formed by plume–ridge interaction at a mid‐ocean ridge within the Bangong–Nujiang ocean.  相似文献   

16.
Abstract The chemical Th-U-total Pb isochron method (CHIME) was applied to determine the age of monazite and thorite in five gneisses and zircon in an ultra high-pressure (UHP) phengite schist from the Su-Lu region, eastern China. The CHIME ages and isotopic ages reported in the literature show that gneisses in the Su-Lu region are divided into middle Proterozoic (1500–1720 Ma) and Mesozoic (100–250 Ma) groups. The Proterozoic group includes paragneiss and orthogneiss of the amphibolite-granulite facies, and their protolith age is late Archean-early Proterozoic. The Mesozoic group is mainly composed of orthogneiss of the greenschist-epidote amphibolite facies, and the protolith age is Middle Paleozoic-Early Proterozoic. The Proterozoic and Mesozoic gneisses occupy northern and southern areas of the Su-Lu region, respectively, which are divided by a major Wulian-Qingdao-Yantai fault. Ultra high-pressure metamorphic rocks occur as blocks in the Mesozoic gneisses, and form a UHP complex.
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses.  相似文献   

17.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

18.
Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U–Pb ages are reported from an ultrahigh‐temperature (UHT) spinel–orthopyroxene–garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan–Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950°C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P–T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 ± 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490–500 Ma. Since the granulite was metamorphosed at temperatures >900°C, exceeding the closure temperature of U–Pb system in zircon, a possible interpretation is that the 499 ± 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ~500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo‐Asian Ocean and associated accretion‐collision tectonics of the Siberian and Kazakhstan–Junggar Plates followed by rapid exhumation leading to decompression.  相似文献   

19.
K-Ar ages of the Mesozoic (92-100 Ma) Fuxin alkalic basalts (western Liaoning Province) and the Tertiary (23-45 Ma) Pingquan alkalic basalts (eastern Hebei Province), and the results of in situ zircon U-Pb dating, Hf isotope and the trace elements from three monzonite xenoliths carried in the alkalic basalts are reported. The crust-mantle interaction occurring in the Yanshan intracontinental orogenic belt is also discussed. Fuxin zircons show highly uniform U-Pb age ((169±3) Ma). More than 95% Pingquan zircons display the age of (107±10) Ma except two are 2491 Ma and 513 Ma respectively. Zircons with the ages of (169±3) Ma have εHf close to zero. εHf of the zircons with the ages of (107±10) Ma are mainly at -11.5--16.3, showing the crustal derivation. Fuxin zircons contain low Nb, Ta, Sr, Th, U contents, low and narrow Hf model ages (0.87-1.00 Ga), which reflect that the source materials of the monzonite xenoliths are young to Pingquan (focus at (1.28±0.08) Ga). High contents of the incompatible elements, and wide range of Hf model ages (0.89-2.56 Ga) in Pingquan zircons suggest a more complex source and the highly crustal maturity in their petrogenesis. Comprehensive information including the published data indicates that J3-K1 is the key period of the deep processes and shallow tectonic reverse in the Yanliao area. However, the processes were highly heterogeneous in spatial and in temporal.  相似文献   

20.
U–Pb ages of detrital zircons and white mica K–Ar ages are obtained from two psammitic schists from the western and eastern units of the Sanbagawa Metamorphic Belt located in the Sakuma–Tenryu area. The detrital zircons in the sample from the western unit (T1) show an age cluster around 95 Ma, and the youngest age in the detrital zircons is 94.0 ± 0.6 Ma. The detrital zircons in the sample from the eastern unit (T5) show a main age cluster in the Late Cretaceous with some older ages, and the youngest age in the detrital zircons is 72.8 ± 0.9 Ma. The youngest zircon ages restrict the older limit of the depositional ages of each sample. White mica K–Ar ages of T1 and T5 are 69.8 ± 1.5 Ma and 56.1 ± 1.2 Ma, respectively, which indicate the age of exhumation and restrict the younger limit on the depositional age of each sample. The results show that the western and eastern units were different in their depositional and exhumation ages, suggesting the episodic subduction and exhumation of the Sanbagawa Belt in the Sakuma–Tenryu area. These results also suggest simultaneous existence of subduction and exhumation paths of metamorphic rocks in the high‐P/T Sanbagawa Metamorphic Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号