首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

2.
The uplift and exhumation process in the Tianshan orogen since the late Paleozoic were likely related to the preservation of ore deposits. This study involved reconstructing the whole tectonic thermal history of the Ouxidaban pluton in central South Tianshan Mountains based on hornblende/plagioclase Ar-Ar and zircon/apatite(U-Th)/He methods. The thermal history and uplift process of central South Tianshan Mountains since the late Paleozoic were analyzed according to the results of previous works and cooling/exhumation rate features. The hornblende yields a plateau age of 382.6±3.6 Ma, and the plagioclase yields a weighted mean age of 265.8±4.9 Ma. The Ouxidaban pluton yields weighted mean zircon(U-Th)/He age of 185.8±4.3 Ma and apatite(U-Th)/He age of 31.1±2.9 Ma, respectively. Five stages of tectonic thermal history of South Tianshan Mountains since the late Paleozoic could be discriminated by the cooling curve and modeling simulation:(1) from the latest Silurian to Late Devonian, the average cooling rate of the Ouxidaban pluton was 7.84°C/Ma;(2) from the Late Devonian to the latest Middle Permian, the average cooling rate was about 2.07°C/Ma;(3) from the latest Middle Permian to the middle Eocene, the cooling rate decreased to about 0.68°C/Ma, suggesting that the tectonic activity was gentle at this time;(4) a sudden increase of the cooling rate(5.00°C/Ma) and the exhumation rate(0.17 mm/a), and crustal exhumation of ~1.83 km indicated that the Ouxidaban pluton would suffer a rapid uplift event during the Eocene(~46?35 Ma);(5) since the middle Eocene, the rapid uplift was sustained, and the average cooling rate since then has been 1.14°C/Ma with an exhumation rate of about 0.04 mm/a and an exhumation thickness of 1.33 km. The strong uplift since the Cenozoic would be related to a far-field effect from the Indian and Eurasian plates' collision. However, it was hysteretic that the remote effect was observed in the Tianshan orogenic belt.  相似文献   

3.
本文通过背斜褶皱变形与低温热年代学年龄(磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)端元模型研究,约束低起伏度、低斜率地貌特征的四川盆地南部地区新生代隆升剥露过程.四川盆地南部沐川和桑木场背斜地区新生代渐新世-中新世发生了相似的快速隆升剥露过程(速率为~0.1 mm/a、现今地表剥蚀厚度1.0~2.0 km),反映出盆地克拉通基底对区域均一性快速抬升冷却过程的控制作用.川南沐川地区磷灰石(U-Th)/He年龄值为~10-28.6 Ma, 样品年龄与古深度具有明显的线性关系,揭示新生代~10-30 Ma以速率为0.12±0.02 mm/a的稳态隆升剥露过程.桑木场背斜地区磷灰石裂变径迹年龄为~36-52 Ma,古深度空间上样品AFT年龄变化不明显(~50 Ma)、且具有相似的径迹长度(~12.0 μm).磷灰石裂变径迹热演化史模拟表明桑木场地区经历三个阶段热演化过程:埋深增温阶段(~80 Ma以前)、缓慢抬升冷却阶段(80-20 Ma)和快速隆升剥露阶段(~20 Ma-现今),新生代隆升剥露速率大致分别为~0.025 mm/a和~0.1 mm/a.新生代青藏高原大规模地壳物质东向运动与四川盆地克拉通基底挤压,受板缘边界主断裂带差异性构造特征控制造就了青藏高原东缘不同的边界地貌特征.  相似文献   

4.
Abstract The Ryoke metamorphic belt in south-west Japan consists mainly of I-type granitoids and associated low-pressure/high-temperature metamorphic rocks. In the Yanai district, it has been divided into three structural units: northern, central and southern units. In this study, we measured the Rb–Sr whole-rock–mineral isochron ages and fission-track ages of the gneissose granodiorite in the central structural unit. Four Rb–Sr ages fall in a range of ca 89–87 Ma. The fission-track ages of zircon and apatite are 68.9 ± 2.6 Ma and 57.4 ± 2.5 Ma (1σ error), respectively. Combining the newly obtained ages with previously reported (Th–)U–Pb ages from the same unit, thermochronologic study revealed two distinctive cooling stages; 1) a rapid cooling (> 40°C/Myr) for a period (~7 Myr) soon after the peak metamorphism (~ 95 Ma) and 2) the subsequent slow cooling stage (~ 5°C/Myr) after ca 88 Ma. The first rapid cooling stage corresponds to thermal relaxation of the intruded granodiorite magma and its associated metamorphic rocks, and to the uplift by a displacement along low-angle faults which initiated soon after the intrusion of the magma. Uplift by the later stage deformation having formed large-scale upright folds resulted in progress of the exhumation during the first stage. The average exhumation velocity of the stage is ≥ 2 mm/yr. During the second stage, the rocks were not accompanied by ductile deformation and were exhumed with the rate of 0.1–0.2 mm/yr. The difference in the exhumation velocity between the first and second cooling stages resulted from the difference in the thickness of the crust and in the activity of ductile deformation between the early and later stages of the orogenesis.  相似文献   

5.
(U-Th)/He热定年技术是近年来用于沉积盆地热史研究的新技术,目前主要是利用磷灰石和锆石的He年龄来揭示地层的构造抬升和热历史.本文依据塔里木盆地钻井样品的实测磷灰石和锆石(U-Th)/He年龄数据,初步得出了该地区磷灰石(U-Th)/He年龄的封闭温度为85℃,并建立了深度/温度-年龄演化模式;锆石则未达到其较高的封闭温度.综合利用本次实测的He年龄数据结合磷灰石裂变径迹和等效镜质组反射率等古温标,模拟计算了塔里木盆地孔雀1井(KQ1)自奥陶纪末期以来的热历史.模拟结果表明,孔雀1井区奥陶纪末期的地温梯度可达35.5℃/km,志留纪—泥盆纪时期的地温梯度为33.3~34.5℃/km,白垩纪末期地温梯度27.6℃/km左右.因此,(U-Th)/He年龄结合其他古温标综合模拟的方法可以很好地揭示沉积盆地的热历史.特别是该技术为缺乏常规古温标的塔里木盆地下古生界碳酸盐岩层系所经受热史的恢复提供了新的方法.  相似文献   

6.
采样地形对年龄-高程法应用的限制   总被引:2,自引:0,他引:2       下载免费PDF全文
常远  王玮  周祖翼 《地球物理学报》2010,53(8):1868-1874
年龄-高程法是地质热年代学中利用垂向分布的样品高程和年龄关系计算山体剥露速率的技术,其主要优势在于避免了未知古地温梯度的约束,被广泛应用于造山带研究中.但在实际应用中,由于样品采集剖面无法完全满足垂直的要求,会引入封闭温度面受地形起伏影响所带来的计算误差.本文利用稳态地温场数值模拟,在理论三角函数地形条件下,对不同采样剖面和地温梯度条件下,年龄-高程法的计算准确性进行了定量评估,并据此指出地温梯度不大于30 ℃/km时,在高差为2 km的采样剖面内,应用磷灰石(U-Th)/He年龄-高程法,样品水平分布2.5 km以内时,计算结果高出实际剥露速率不超过11%,可以近似认为采样剖面垂直、计算结果准确;应用磷灰石裂变径迹年龄-高程法,样品水平分布5 km以内时,计算剥露速率高出实际剥露速率在15%以内,可以直接利用.  相似文献   

7.
Combined apatite fission track(AFT)and(U-Th)/He(AHe)thermochronometries can be of great value for investigating the history of exhumation of orogenic belts.We evaluate the results of such a combined approach through the study on rock samples collected from the Baluntai section in the Tianshan Mountains,northwestern China.Our results show that AFT ages range from~60 to 40 Ma and AHe ages span~40–10 Ma.Based on the strict thermochronological constraints imposed by AHe ages,forward modeling of data derived from AFT analyses provides a well-constrained Cenozoic thermal history.The modeled results reveal a history of relatively slow exhumation during the early Cenozoic times followed by a significantly accelerated exhumation process since the early Miocene with the rate increasing from<30 m/Myr to>100 m/Myr,which is consistent with the inference from the exhumation rates calculated based on both AFT and AHe age data by age-closure temperature and mineral pair methods.Further accelerated exhumation since the late Miocene is recorded by an AHe age(~11 Ma)from the bottom of the Baluntai section.Together with the previous low-temperature thermochronological data from the other parts of the Tianshan Mountains,the rapid exhumation since the early Miocene is regarded as an important exhumation process likely prevailing within the whole range.  相似文献   

8.
Single-crystal (U-Th)/He dating of 32 apatite and zircon crystals from an impact breccia yielded a weighted mean age of 663 ± 28 ka (n = 3; 4.2 % 2σ uncertainties) for the Monturaqui impact structure, Chile. This ~350 m diameter simple crater preserves a small volume of impactite consisting of polymict breccias that are dominated by reworked target rock clasts. The small size, young age and limited availability of melt material for traditional geochronological techniques made Monturaqui a good test to define the lower limits of the (U-Th)/He system to successfully date impact events. Numerical modeling of 4He loss in apatite and zircon crystals shows that, for even small craters such as Monturaqui, the short-lived compressional stage and shock metamorphic stage can account for the observed partial to full resetting of (U-Th)/He ages in accessory minerals. Despite the distinctly different 4He diffusion parameters of apatite and zircon, the 2σ-overlapping youngest ages are recorded in both populations of minerals, which supports the inference that the weighted mean of the youngest (U-Th)/He population is the age of formation of this impact structure.  相似文献   

9.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

10.
长波长、低起伏度大凉山构造带新生代隆升剥露与建造过程是解译青藏高原东向扩展过程的关键核心地区之一.本文基于大凉山构造带喜德剖面和沐川剖面9件样品的多封闭系统低温热年代学年龄(即磷灰石(U-Th)/He(AHe)、磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe))定年,揭示出多封闭系统热年代学年龄与古岩性柱深度具有明显的正相关性,即伴随古岩性柱深度增大,多封闭系统热年代学年龄明显减小.喜徳剖面多封闭系统低温热年代学AHe、AFT和ZHe年龄值分别为7—9Ma、14—22Ma和25—38Ma;沐川剖面多封闭系统低温热年代学AHe和AFT年龄值分别为10—26Ma、23—85Ma,ZHe年龄值为未完全退火年龄.多封闭系统热年代学和QTQt热史模拟揭示,大凉山构造带喜徳和沐川剖面岩性柱所有样品都经历大致相似的三阶段热演化过程,尤其是晚新生代快速隆升剥露阶段(30—20 Ma以来),其平均剥露速率分别为~0.15mm·a-1和~0.20mm·a-1,抬升剥露量分别为~3.0km和~1.5km.结合区域低温热年代学特征的大凉山构造带地表隆升动力学模型,揭示出重力均衡作用下地壳缩短与剥露作用(即构造隆升剥露机制)控制形成了现今大凉山造山带长波长、低起伏和高海拔地貌建造过程.  相似文献   

11.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

12.
Laser Raman spectroscopy and cathodoluminescence (CL) image reveal that zircons separated from paragneisses in the southwestern Sulu terrane (eastern China) preserve multi-stage mineral assemblages in different zircon domains. In the same paragneiss zircon sample, some zircon grains retain inherited (detrital) cores with abundant low-pressure mineral inclusions of Qtz + Phe + Ap + impurities and Qtz + Phe + impurities. The ultrahigh-pressure (UHP) metamorphic overgrowths mantles of these zircons preserve Coe, Coe + Phe and other UHP mineral inclusions, indicating that these inherited (detrital) zircons from protoliths experienced metamorphic recrystallization during the Sulu UHP metamorphic event. However, other zircon grains preserve UHP mineral inclusions of Coe, Coe + Ap and Coe + Phe in the cores and mantles, whereas the outmost rims contain quartz (Qtz) and other low-pressure mineral inclusions. These phenomena prove that the second group zircons were crystallized at UHP metamorphic stage and overpr  相似文献   

13.
Yu  Shun  Chen  Wen  Sun  Jingbo  Shen  Ze 《中国科学:地球科学(英文版)》2019,62(4):719-732
To gain a better quantitative understanding of zircon(U-Th)/He ages and evaluate the applicability of zircon(U-Th)/He dating, the diffusion characteristics, He diffusion kinetics, helium partial retention zone(HePRZ), closure temperature, and(U-Th)/He ages were investigated using high-precision laboratory step heating experiments based on the thermally activated diffusion process. The ln(D/a~2) in Fish Canyon Tuff(FCT) zircons determined from laboratory step heating experiments was negatively correlated with reciprocal temperature, as expected for thermally activated volume diffusion. The zircon activation energies ranged from 144 to 184 kJ mol~(-1) with a mean of 169±12 kJ mol~(-1). The closure temperatures ranged from 144 to 216°C(a cooling rate of 10°C Ma~(-1) and an effective grain radius of 38–60 μm) with an average of 176±18°C. The calculated closure temperature increased with increasing cooling rate, yielding an average zircon He closure temperature of ~136°C at a slow cooling rate of 0.1°C Ma~(-1), whereas the closure value was ~199°C at a cooling rate of 100°C Ma~(-1). The closure temperature increased with the equivalent spherical radius assuming a constant cooling rate. The He ages from FCT zircons were negligibly affected by grain size because of the rapid cooling. He preserved in the zircon was sensitive to temperature and holding time, and the temperature range for zircon HePRZ gradually decreased with increasing holding time. The(U-Th)/He ages from 26 FCT zircons yielded an algorithmic mean of 28.3±0.3 Ma(S.E.) and a geometric mean of 28.4±0.3 Ma(S.E.), consistent with the ages of 28.4±1.9 Ma reported by other laboratories. The FCT zircons were characterized by rapid cooling, young(U-Th)/He ages with good reproducibility, and low alpha doses. Weak correlations between the He ages and effective uranium(eU) concentrations from the FCT zircons indicated radiation damage did not significantly affect He diffusivity.  相似文献   

14.
喻顺  陈文  张斌  孙敬博  李超  袁霞  沈泽  杨莉  马勋 《地球物理学报》2016,59(8):2922-2936
天山是中亚造山带重要组成部分,其中-新生代构造热演化及隆升剥露史研究是认识中亚造山带构造变形过程与机制的关键.本文应用磷灰石(U-Th)/He技术重建中天山南缘科克苏河地区中-新生代构造热演化及隆升剥蚀过程.磷灰石(U-Th)/He数据综合解释及热演化史模拟表明该地区至少存在晚白垩世、早中新世、晚中新世3期快速隆升剥蚀事件,起始时间分别为~90Ma、~13Ma及~5Ma,且这3期隆升剥蚀事件在整个天山地区具有广泛的可对比性.相对于磷灰石裂变径迹,磷灰石(U-Th)/He年龄记录了中天山南缘地质演化史中更新和更近的热信息,即中天山在晚中新世(~5 Ma)快速隆升剥蚀,其剥蚀速率为~0.47mm·a~(-1),剥蚀厚度为~2300m.总体上,中天山科克苏地区隆升剥蚀起始时间从天山造山带向昭苏盆地(由南向北)逐渐变老,表明了中天山南缘隆升剥蚀存在不均一性,并发生了多期揭顶剥蚀事件.  相似文献   

15.
UPb analyses of fractions of zircon and monazite (3–8 grains each) and of single zircon grains resolve a lower Ordovician age of 470 ±4m.y. for the Palung granite which occurs in the High Himalayan nappes south of Kathmandu. Its thrusting during the Alpine orogeny under lower greenschist facies conditions did not affect the UPb systems in zircon and monazite. The granite crystallized from a magma which was mainly generated by anatexis of Precambrian continental crust. The magma was heterogeneous with respect to primary ages and/or metamorphic histories of the magma source rocks. This indicates either a derivation from (meta-) sediments or an intense mixing of different crustally derived magmas. The genesis of the Palung granite is possibly related to an orogeny which affected the Indian shield in lower Palaeozoic times. The detected inherited radiogenic lead in the Palung zircons occurs in perfectly homogeneous, transparent crystals; i.e. this radiogenic (“excess”) lead is not related to the presence of old, microscopically visible, overgrown zircon cores. The minimum ages of the inherited lead components range from about 800 to 1700 m.y.  相似文献   

16.
While the high-temperature exhumation process in the Dabie Mountain has been well documented, the low-temperature exhumation of this area since Cretaceous, especially since Late Cretaceous, is relatively less studied. Low-temperature thermochronology provides one of the important approaches to solve this problem. Based on the data of fission track and (U-Th)/He analysis of apaptites and zircons from the granitoid and metamorphic rocks in the Dabie Mountain, this paper applies Mancktelow’s and Braun’s methods to estimating the exhumation rates and to drawing the regional differential exhumation pattern since Cretaceous, especially since Late Cretaceous by taking into consideration factors such as heat transport, heat advection, topography and heat production, which could influence geothermal field in the shallow crust. Since Cretaceous, the exhumation rate (0.08-0.10 km/Ma) in the region around Tiantangzhai and in the south of Tanlu fault zone is larger than the rate (0.04-0.07 km/Ma) in other areas of the Dabie Mountain. The regional differential exhumation pattern might be related to the push-up effect caused by differential strike-slip movement along NNE-trending faults.  相似文献   

17.
对米仓山南江-南郑剖面上的13个花岗岩类样品进行了磷灰石(U-Th)/He测年和剥露速率计算,分析过程综合考虑了样品冷却速率、晶体大小等因素对磷灰石(U-Th)/He封闭温度的影响和地形起伏、岩体热传导、热对流及放射性元素生热等因素对地温场的影响.研究表明,米仓山南部沉积变形区自~50 Ma以来发生快速剥露 (剥露速率为~70 m/Ma),新生代以来的剥蚀量超过了3 km;中部光雾山杂岩体记录了~90 Ma时一次快速剥露事件(剥露速率>75 m/Ma);北部汉南隆起区~100 Ma以前以快速剥露为特点,平均剥露速率>40 m/Ma,此后转为缓慢剥露.整个米仓山-汉南隆起区在90~50 Ma基本处于缓慢剥露状态,平均剥露速率仅有10~25 m/Ma.  相似文献   

18.
U–Pb ages of detrital zircons and white mica K–Ar ages are obtained from two psammitic schists from the western and eastern units of the Sanbagawa Metamorphic Belt located in the Sakuma–Tenryu area. The detrital zircons in the sample from the western unit (T1) show an age cluster around 95 Ma, and the youngest age in the detrital zircons is 94.0 ± 0.6 Ma. The detrital zircons in the sample from the eastern unit (T5) show a main age cluster in the Late Cretaceous with some older ages, and the youngest age in the detrital zircons is 72.8 ± 0.9 Ma. The youngest zircon ages restrict the older limit of the depositional ages of each sample. White mica K–Ar ages of T1 and T5 are 69.8 ± 1.5 Ma and 56.1 ± 1.2 Ma, respectively, which indicate the age of exhumation and restrict the younger limit on the depositional age of each sample. The results show that the western and eastern units were different in their depositional and exhumation ages, suggesting the episodic subduction and exhumation of the Sanbagawa Belt in the Sakuma–Tenryu area. These results also suggest simultaneous existence of subduction and exhumation paths of metamorphic rocks in the high‐P/T Sanbagawa Metamorphic Belt.  相似文献   

19.
Zircon is one of the most commonly used accessory minerals rich in U and Th for(U-Th)/He dating system. Compared with apatite, zircon has a higher He closure temperature (~190℃), which gives it more advantages in solving the problem of source material and thermal history reconstruction in sedimentary basins. However, the crystals of zircons often have U and Th zoning development, with obvious differences in concentration. Even the standard sample of FCT(Fish Canyon Tuff)zircon which is widely used in (U-Th)/He dating has an average age dispersion of about 10%. In this study, the Alphachron He isotope mass spectrometer is used for laser melting of a batch of single grains of FCT zircon(11 grains)to determine their 4He content. The contents of U and Th of parent isotopes are accurately determined by automatic injection of Agilent 7900 ICP-MS and isotope diluent method. The Th/U ratios of the 10 FCT zircons calculated with (U-Th)/He average age in this paper range from 0.52 to 0.67, which are consistent with the Th/U ratios of 186 reported so far. According to the Th/U ratios of 189 FCT zircons published in the statistical literature, we found that only three of them had high Th/U ratios, namely, 1.12, 1.16 and 1.5, the other 186 FCT zircons(occupy>98%) had a Th/U ratio less than 1. Based on previous results and the 10 Th/U ratios measured in this paper, 196 FCT zircons have a normal Th/U ratio ranging from 0.27 to 1.00, with an average ratio of 0.56(n=196). Excluding one abnormally old age, the(U-Th)/He ages of the remaining FCT zircons in this study range from 26.61 to 31.91Ma, with a weighted mean age of (28.8±3.1)Ma (2SD, n=10), which is consistent with the mean age ((28.3±3.1)Ma, 2σ, n=127) or (28.29±2.6)Ma(2σ external error, 9.3%, n=114)obtained by several other international laboratories. This indicates that the zircon single particle(U-Th)/He dating process established by our laboratory is reliable. For the zircon samples with U, Th banding and concentration differences prevailing, determining the distribution of U, Th elements in the crystal prior to the (U-Th)/He experiment is essential for understanding effects of geometry and elemental zoning on nuclear recoil and diffusion and the interpretation of (U-Th)/He age data.  相似文献   

20.
Precambrian basement rocks have been affected by Caledonian thermal metamorphism. Caledonian‐aged zircon grains from Precambrian basement rocks may have resulted from thermal metamorphism. However, Hercynian ages are rarely recorded. Zircon U–Pb Sensitive High Resolution Ion Microprobe (SHRIMP) dating reveals that zircon ages from the Huyan, Lingdou, and Pengkou granitic plutons can be divided into two groups: one group with ages of 398.9 ±5.3 Ma, 399 ±5 Ma, and 410.2 ±5.4 Ma; and a second group with ages of 354 ±11 Ma, 364.6 ±6.7 Ma, and 368 ±14 Ma. The group of zircon U–Pb ages dated at 410–400 Ma represent Caledonian magmatism, whereas the 368–354 Ma ages represent the age of deformation, which produced gneissosity. The three plutons share geochemical characteristics with S‐type granites and belong to the high‐K calc‐alkaline series of peraluminous rocks. They have (87Sr/86Sr)i ratios of 0.710 45–0.724 68 and εNd(t) values of ?7.33 to ?10.74, with two‐stage Nd model ages (TDM2) ranging from 1.84 Ga to 2.10 Ga. Magmatic zircon εHf(t) values range from ?3.79 to ?8.44, and have TDMC ages of 1.65–1.93 Ga. The data suggest that these granites formed by partial melting of Paleoproterozoic to Mesoproterozoic continental crust. A collision occurred between the Wuyi and Minyue microcontinents within the Cathaysia Block and formed S‐type granite in the southwest Fujian province. The ca 360 Ma zircon U–Pb ages can represent a newly recognized period of deformation which coincided with the formation of the unified Cathaysia Block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号