首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

2.
A synthetic [simulated] Earth gravity model (SEGM) of the geoid, gravity and topography has been constructed over Australia specifically for validating regional gravimetric geoid determination theories, techniques and computer software. This regional high-resolution (1-arc-min by 1-arc-min) Australian SEGM (AusSEGM) is a combined source and effect model. The long-wavelength effect part (up to and including spherical harmonic degree and order 360) is taken from an assumed errorless EGM96 global geopotential model. Using forward modelling via numerical Newtonian integration, the short-wavelength source part is computed from a high-resolution (3-arc-sec by 3-arc-sec) synthetic digital elevation model (SDEM), which is a fractal surface based on the GLOBE v1 DEM. All topographic masses are modelled with a constant mass-density of 2,670 kg/m3. Based on these input data, gravity values on the synthetic topography (on a grid and at arbitrarily distributed discrete points) and consistent geoidal heights at regular 1-arc-min geographical grid nodes have been computed. The precision of the synthetic gravity and geoid data (after a first iteration) is estimated to be better than 30 μ Gal and 3 mm, respectively, which reduces to 1 μ Gal and 1 mm after a second iteration. The second iteration accounts for the changes in the geoid due to the superposed synthetic topographic mass distribution. The first iteration of AusSEGM is compared with Australian gravity and GPS-levelling data to verify that it gives a realistic representation of the Earth’s gravity field. As a by-product of this comparison, AusSEGM gives further evidence of the north–south-trending error in the Australian Height Datum. The freely available AusSEGM-derived gravity and SDEM data, included as Electronic Supplementary Material (ESM) with this paper, can be used to compute a geoid model that, if correct, will agree to in 3 mm with the AusSEGM geoidal heights, thus offering independent verification of theories and numerical techniques used for regional geoid modelling.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00190-005-0002-z  相似文献   

3.
In the analyses of 2D real arrays, fast Hartley (FHT), fast T (FTT) and real-valued fast Fourier transforms are generally preferred in lieu of a complex fast Fourier transform due to the advantages of the former with respect to disk storage and computation time. Although the FHT and the FTT in one dimension are identical, they are different in two or more dimensions. Therefore, first, definitions and some properties of both transforms and the related 2D FHT and FTT algorithms are stated. After reviewing the 2D FHT and FTT solutions of Stokes' formula in planar approximation, 2D FHT and FTT methods are developed for geoid updating to incorporate additional gravity anomalies. The methods are applied for a test area which includes a 64×64 grid of 3×3 point gravity anomalies and geoid heights calculated from point masses. The geoids computed by 2D FHT and FTT are found to be identical. However, the RMS value of the differences between the computed and test geoid is ±15 mm. The numerical simulations indicate that the new methods of geoid updating are practical and accurate with considerable savings on storage requirements. Received: 15 February 1996; Accepted: 22 January 1997  相似文献   

4.
The Stokes formula is efficiently evaluated by the one-and two- dimensional (1D, 2D) fast Fourier transform (FFT) technique in the plane and on the sphere in order to obtain precise geoid determinatiover a large area such as Europe. Using a high-pass filtered spherical harmonic reference model (OSU91A truncated to different degrees), gridded gravity anomalies and geoid heights were produced and the anomalies were used as input in the FFT software. Various tests were performed with respect to the different kernel functions used, to the spherical computations in bands, as well as to windowing, edge effects and extent of the area. It is thus demonstrated that, in geoid computations over large regions, the 1D spherical FFT and the 2D multiband spherical FFT in combination with discrete spectra for the kernel functions and 100% zero-padding give better results than those obtained by the other transform techniques. Additionally, numerical tests were carried out at the same test area using the planar fast Hartley transform (FHT) instead of the FFT and the results obtained by the two attractive alternatives were compared regarding the requirements in both computer time and computer memory needed in geoid height computations.A slightly modified version of the paper has been presented at the XX EGS General Assembly, Hamburg, 3–7 April, 1995  相似文献   

5.
The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9–10):491–504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and distributions of these effects.  相似文献   

6.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

7.
When regional gravity data are used to compute a gravimetric geoid in conjunction with a geopotential model, it is sometimes implied that the terrestrial gravity data correct any erroneous wavelengths present in the geopotential model. This assertion is investigated. The propagation of errors from the low-frequency terrestrial gravity field into the geoid is derived for the spherical Stokes integral, the spheroidal Stokes integral and the Molodensky-modified spheroidal Stokes integral. It is shown that error-free terrestrial gravity data, if used in a spherical cap of limited extent, cannot completely correct the geopotential model. Using a standard norm, it is shown that the spheroidal and Molodensky-modified integration kernels offer a preferable approach. This is because they can filter out a large amount of the low-frequency errors expected to exist in terrestrial gravity anomalies and thus rely more on the low-frequency geopotential model, which currently offers the best source of this information. Received: 11 August 1997 / Accepted: 18 August 1998  相似文献   

8.
Airborne gravimetry used in precise geoid computations by ring integration   总被引:1,自引:1,他引:0  
Two detailed geoids have been computed in the region of North Jutland. The first computation used marine data in the offshore areas. For the second computation the marine data set was replaced by the sparser airborne gravity data resulting from the AGMASCO campaign of September 1996. The results of comparisons of the geoid heights at on-shore geometric control showed that the geoid heights computed from the airborne gravity data matched in precision those computed using the marine data, supporting the view that airborne techniques have enormous potential for mapping those unsurveyed areas between the land-based data and the off-shore marine or altimetrically derived data. Received: 7 July 1997 / Accepted: 22 April 1998  相似文献   

9.
A method is presented with which to verify that the computer software used to compute a gravimetric geoid is capable of producing the correct results, assuming accurate input data. The Stokes, gravimetric terrain correction and indirect effect formulae are integrated analytically after applying a transformation to surface spherical coordinates centred on each computation point. These analytical results can be compared with those from geoid computation software using constant gravity data in order to verify its integrity. Results of tests conducted with geoid computation software are presented which illustrate the need for integration weighting factors, especially for those compartments close to the computation point. Received: 6 February 1996 / Accepted: 19 April 1997  相似文献   

10.
Truncated geoid and gravity inversion for one point-mass anomaly   总被引:1,自引:0,他引:1  
The truncated geoid, defined by the truncated Stokes' integral transform, an integral convolution of gravity anomalies with the Stokes' function on a spherical cap, is often used as a mathematical tool in geoid computations via Stokes' integral to overcome computational difficulties, particularly the need to integrate over the entire boundary spheroid. The objective of this paper is to demonstrate that the truncated geoid does, besides having mathematical applications, have physical interpretation, and thus may be used in gravity inversion. A very simple model of one point-mass anomaly is chosen and a method for inverting its synthetic gravity field with the use of the truncated geoid is presented. The method of inverting the synthetic field generated by one point-mass anomaly has become fundamental for the authors' inversion studies for sets of point-mass anomalies, which are published in a separate paper. More general applications are currently under investigation. Since an inversion technique for physically meaningful mass distributions based on the truncated geoid has not yet been developed, this work is not related to any of the existing gravity inversion techniques. The inversion for one point mass is based on the onset of the so-called dimple event, which occurs in the sequence of surfaces (or profiles) of the first derivative of the truncated geoid with respect to the truncation parameter (radius of the integration cap), its only free parameter. Computing the truncated geoid at various values of the truncation parameter may be understood as spatial filtering of surface gravity data, a type of weighted spherical windowing method. Studying the change of the truncated geoid represented by its first derivative may be understood as a data enhancement method. The instant of the dimple onset is practically independent of the mass of the point anomaly and linearly dependent on its depth. Received: 26 September 1996 /Accepted: 28 September 1998  相似文献   

11.
A 2×2 arc-minute resolution geoid model, CARIB97, has been computed covering the Caribbean Sea. The geoid undulations refer to the GRS-80 ellipsoid, centered at the ITRF94 (1996.0) origin. The geoid level is defined by adopting the gravity potential on the geoid as W 0=62 636 856.88 m2/s2 and a gravity-mass constant of GM=3.986 004 418×1014 m3/s2. The geoid model was computed by applying high-frequency corrections to the Earth Gravity Model 1996 global geopotential model in a remove-compute-restore procedure. The permanent tide system of CARIB97 is non-tidal. Comparison of CARIB97 geoid heights to 31 GPS/tidal (ITRF94/local) benchmarks shows an average offset (hHN) of 51 cm, with an Root Mean Square (RMS) of 62 cm about the average. This represents an improvement over the use of a global geoid model for the region. However, because the measured orthometric heights (H) refer to many differing tidal datums, these comparisons are biased by localized permanent ocean dynamic topography (PODT). Therefore, we interpret the 51 cm as partially an estimate of the average PODT in the vicinity of the 31 island benchmarks. On an island-by-island basis, CARIB97 now offers the ability to analyze local datum problems which were previously unrecognized due to a lack of high-resolution geoid information in the area. Received: 2 January 1998 / Accepted: 18 August 1998  相似文献   

12.
Spherical cap harmonic analysis is the appropriate analytical technique for modelling Laplacian potential and the corresponding field components over a spherical cap. This paper describes the use of this method by means of a least-squares approach for local gravity field representation. Formulations for the geoid undulation and the components ξ, η of the deflection of the vertical are derived, together with some warnings in the application of the technique. Although most of the formulations have been given by another paper, these were confusing or even incorrect, mainly because of an improper application of the spherical cap harmonic analysis. Received: 16 January 1996 / Accepted: 17 March 1997  相似文献   

13.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

14.
 The downward continuation of the harmonic disturbing gravity potential, derived at flight level from discrete observations of airborne gravity by the spherical Hotine integral, to the geoid is discussed. The initial-boundary-value approach, based on both the direct and inverse solution to Dirichlet's problem of potential theory, is used. Evaluation of the discretized Fredholm integral equation of the first kind and its inverse is numerically tested using synthetic airborne gravity data. Characteristics of the synthetic gravity data correspond to typical airborne data used for geoid determination today and in the foreseeable future: discrete gravity observations at a mean flight height of 2 to 6 km above mean sea level with minimum spatial resolution of 2.5 arcmin and a noise level of 1.5 mGal. Numerical results for both approaches are presented and discussed. The direct approach can successfully be used for the downward continuation of airborne potential without any numerical instabilities associated with the inverse approach. In addition to these two-step approaches, a one-step procedure is also discussed. This procedure is based on a direct relationship between gravity disturbances at flight level and the disturbing gravity potential at sea level. This procedure provided the best results in terms of accuracy, stability and numerical efficiency. As a general result, numerically stable downward continuation of airborne gravity data can be seen as another advantage of airborne gravimetry in the field of geoid determination. Received: 6 June 2001 / Accepted: 3 January 2002  相似文献   

15.
Fast and accurate relative positioning for baselines less than 20 km in length is possible using dual-frequency Global Positioning System (GPS) receivers. By measuring orthometric heights of a few GPS stations by differential levelling techniques, the geoid undulation can be modelled, which enables GPS to be used for orthometric height determination in a much faster and more economical way than terrestrial methods. The geoid undulation anomaly can be very useful for studying tectonic structure. GPS, levelling and gravity measurements were carried out along a 200-km-long highly undulating profile, at an average elevation of 4000 m, in the Ladak region of NW Himalaya, India. The geoid undulation and gravity anomaly were measured at 28 common GPS-levelling and 67 GPS-gravity stations. A regional geoid low of nearly −4 m coincident with a steep negative gravity gradient is compatible with very recent findings from other geophysical studies of a low-velocity layer 20–30 km thick to the north of the India–Tibet plate boundary, within the Tibetan plate. Topographic, gravity and geoid data possibly indicate that the actual plate boundary is situated further north of what is geologically known as the Indus Tsangpo Suture Zone, the traditionally supposed location of the plate boundary. Comparison of the measured geoid with that computed from OSU91 and EGM96 gravity models indicates that GPS alone can be used for orthometric height determination over the Higher Himalaya with 1–2 m accuracy. Received: 10 April 1997 / Accepted: 9 October 1998  相似文献   

16.
Gravity field convolutions without windowing and edge effects   总被引:5,自引:0,他引:5  
A new set of formulas has been developed for the computation of geoid undulations and terrain corrections by FFT when the input gravity anomalies and heights are mean gridded values. The effects of the analytical and the discrete spectra of kernel functions and that of zero-padding on the computation of geoid undulations and terrain corrections are studied in detail.Numerical examples show that the discrete spectrum is superior to the analytically-defined one. By using the discrete spectrum and 100% zero-padding, the RMS differences are 0.000 m for the FFT geoid undulations and 0.200 to 0.000 mGal for the FFT terrain corrections compared with results obtained by numerical integration.  相似文献   

17.
Gravity field terrain effect computations by FFT   总被引:2,自引:2,他引:2  
The widespread availability of detailed gridded topographic and bathymetric data for many areas of the earth has resulted in a need for efficient terrain effect computation techniques, especially for applications in gravity field modelling. Compared to conventional integration techniques, Fourier transform methods provide extremely efficient computations due to the speed of the Fast Fourier Transform (FFT. The Fourier techniques rely on linearization and series expansions of the basically unlinear terrain effect integrals, typically involving transformation of the heights/depths and their squares. TheFFT methods will especially be suited for terrain reduction of land gravity data and satellite altimetry geoid data. In the paper the basic formulas will be outlined, and special emphasis will be put on the practial implementation, where a special coarse/detailed grid pair formulation must be used in order to minimize the unavoidable edge effects ofFFT, and the special properties ofFFT are utilized to limit the actual number of data transformations needed. Actual results are presented for gravity and geoid terrain effects in test areas of the USA, Greenland and the North Atlantic. The results are evaluated against a conventional integration program: thus, e.g., in an area of East Greenland (with terrain corrections up to10 mgal), the accuracy ofFFT-computed terrain corrections in actual gravity stations showed anr.m.s. error of0.25 mgal, using height data from a detailed photogrammetric digital terrain model. Similarly, isostatic ocean geoid effects in the Faeroe Islands region were found to be computed withr.m.s. errors around0.03 m  相似文献   

18.
 A fast spherical harmonic approach enables the computation of gravitational or magnetic potential created by a non-uniform shell of material bounded by uneven topographies. The resulting field can be evaluated outside or inside the sphere, assuming that density of the shell varies with latitude, longitude, and radial distance. To simplify, the density (or magnetization) source inside the sphere is assumed to be the product of a surface function and a power series expansion of the radial distance. This formalism is applied to compute the gravity signal of a steady, dry atmosphere. It provides geoid/gravity maps at sea level as well as satellite altitude. Results of this application agree closely with those of earlier studies, where the atmosphere contribution to the Earth's gravity field was determined using more time-consuming methods. Received: 14 August 2000 / Accepted: 19 March 2001  相似文献   

19.
 A new method for computing gravitational potential and attraction induced by distant, global masses on a global scale has been developed. The method uses series expansions and the well known one-dimensional fast Fourier transform (1-D FFT) method. It has been proven to be significantly faster than quadrature while being equally accurate. Various quantities were studied to cover the two primary applications of the Stokes–Helmert scheme of modeling effects. These two applications (or paths), given the names R/r/D and R/D/r, are briefly discussed, although the primary objective of the paper is to provide computational information to either path, rather than choosing one path as preferable to the other. It is further shown that the impact of masses outside a 4-degree cap can impact the absolute computation of the geoid at more than 1 cm, and should therefore be included in all local geoid computations seeking that accuracy. Received: 13 December 2000 / Accepted: 3 September 2001  相似文献   

20.
The objective of this study is to evaluate two approaches, which use different representations of the Earth’s gravity field for downward continuation (DC), for determining Helmert gravity anomalies on the geoid. The accuracy of these anomalies is validated by 1) analyzing conformity of the two approaches; and 2) converting them to geoid heights and comparing the resulting values to GPS-leveling data. The first approach (A) consists of evaluating Helmert anomalies at the topography and downward-continuing them to the geoid. The second approach (B) downward-continues refined Bouguer anomalies to the geoid and transforms them to Helmert anomalies by adding the condensed topographical effect. Approach A is sensitive to the DC because of the roughness of the Helmert gravity field. The DC effect on the geoid can reach up to 2 m in Western Canada when the Stokes kernel is used to convert gravity anomalies to geoid heights. Furthermore, Poisson’s equation for DC provides better numerical results than Moritz’s equation when the resulting geoid models are validated against the GPS-leveling. On the contrary, approach B is significantly less sensitive to the DC because of the smoothness of the refined Bouguer gravity field. In this case, the DC (Poisson’s and Moritz’s) contributes only at the decimeter level to the geoid model in Western Canada. The maximum difference between the geoid models from approaches A and B is about 5 cm in the region of interest. The differences may result from errors in the DC such as numerical instability. The standard deviations of the hHN for both approaches are about 8 cm at the 664 GPS-leveling validation stations in Western Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号