首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 608 毫秒
1.
大气加权平均温度Tm是计算水汽转换因子和大气可降水量的重要参数。利用2007—2017年全球大地观测系统(global geodetic observing system, GGOS) Atmosphere Tm格网数据和欧洲中尺度天气预报中心(European centre for medium-range weather forecasts, ECMWF) 2 m温度数据,建立一种适合澳大利亚区域、顾及Tm残差季节性和日周期变化的Tm模型——qTm。此外,采用2018年的GGOS Atmosphere Tm格网数据和探空资料对该模型进行评估。结果表明,qTm模型在澳大利亚区域具有较高的精度和适用性,与GGOS Atmosphere Tm相比,qTm模型的年均偏差(Bias)和均方根误差(root mean square error, RMSE)分别为-0.31 K和1.97 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提高21.8%和25.9%;qTm模型值与探空积分值更符合,模型的年均Bias和RMSE分别为-0.44 K和2.45 K,相比GPT2w-1和GPT2w-5模型分别提高10.2% 和11.8%。qTm模型可为澳大利亚区域提供精确的Tm值,为该区域大气水汽分析和厄尔尼诺现象研究提供基础。  相似文献   

2.
由于日本区域易受自然灾害频发、水汽特征变化复杂、探空站点分布稀疏的问题,进而制约了高精度水汽的获取,因此缺少此区域的高精度加权平均温度(Tm)模型. 鉴于此,采用2009—2016年全球大地测量观测系统(GGOS) Atmosphere Tm和ERA-Interim 2 m Ts格网数据新建立一种考虑Tm残差季节性变化和周日变化的适合日本区域的Tm模型 (JQTm模型). 同时,利用2017年日本区域13个探空站和110个GGOS Atmosphere Tm格网数据,对新建立的JQTm模型在日本区域的精度进行评估. 研究发现:与GGOS Atmosphere Tm格网数据对比,JQTm模型的偏差(bias)和均方根误差(RMSE)分别为0.15 K和1.92 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升41.16% (1.33 K)、44.41% (1.53 K);与探空资料对比,JQTm模型的bias和RMSE分别为–0.66 K和2.14 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升28.43% (0.85 K)、29.61% (0.90 K). JQTm模型能够为日本区域提供高精度的Tm值,为研究此区域大气水汽和极端天气提供重要依据.   相似文献   

3.
联合使用无线电探空和数值气象模式数据,构建了顾及日变化特征的山东省大气加权平均温度模型。以ERA5积分Tm值为参考,对构建Tm模型用于山东省卫星定位连续运行综合应用服务系统(SDCORS)的精度和适用性进行了验证。结果表明:顾及日变化的山东省Tm模型基本消除了系统性偏差影响,均方根误差(RMSE)为3.0 K左右,较Bevis模型和Li模型分别提升24%和16%;且该模型具有良好的稳定性,在SDCORS各站点处的RMSE的最大变化为0.3 K,能够满足SDCORS的GNSS水汽反演应用需求。  相似文献   

4.
加权平均温度(Tm)是全球卫星导航系统技术反演大气可降水量的关键参数,影响着水汽反演的精度。针对传统的Bevis模型运用在中国区域精度不高的问题,该文提出新的增加时空参数的Tm多元线性回归模型。根据2013—2015年中国86个探空站点的探空资料,分析了Tm的时空特征;然后根据2013年站点资料,利用线性回归建模方法建立了中国区域的Tm单因子回归模型和增加了时空参数的Tm多因子回归模型,并利用2014—2015年的探空数据进行验证。Tm单因子回归模型和Tm多因子回归模型的精度分别为3.1 K和2.6 K,比Bevis模型(精度3.3 K)分别提高了约6.0%和21.2%。考虑到季节对Tm的影响,将Tm多因子回归模型按季节分段,得到按季节分段的Tm多因子回归模型,其精度与Tm多因子回归模型大致相当,但能更细致表达出不同季节Tm的精度情况。结果表明增加了时空参数的Tm多因子回归模型更加适合中国区域的加权平均温度Tm的计算。  相似文献   

5.
针对现有Tm模型建模方法多为基于最小二乘线性回归方法以致于模型精度有待提高的问题,该文以中国西北地区2015—2017年的24个探空站的探空数据作为实验数据,在中国西北地区使用粒子群优化BP神经网络(PSO-BP)回归方法建立大气加权平均温度(Tm)模型:将地表温度、水气压、纬度、高程和时间变化等影响因素作为模型输入因子,将数值积分法所计算得到的Tm作为学习目标,利用神经网络模型进行迭代训练得到中国西北地区的Tm。以2018年探空站Tm数据为参考值,对PSO-BP模型精度进行验证,并与Bevis模型、GPT3模型和中国西部地区Tm模型进行比较。结果表明,PSO-BP模型的年均RMSE和年均bias分别为2.71 K和0.35 K,相比Bevis模型、GPT3模型和中国西部地区Tm模型年均RMSE分别降低了1.36 K(33.4%)、1.81 K(39.5%)和1.78 K(39.1%),年均bias分别下降了0.70 K(87.7%)...  相似文献   

6.
针对常用的经验大气加权平均温度(Tm)模型在我国东北地区普遍精度较低等问题,利用遗传算法优化的多层感知器模型,采用东北地区7个探空站2014—2017年的数据进行模型训练,建立适合我国东北地区的Tm模型。依据2018年的数据进行预测分析,实验结果表明:首先,GA-MLP的Tm模型的预测平均偏差为0.04 K、均方误差为4.06 K和判定系数R2=0.920,各项精度评估指标较常用的GPT2w、单/多因子线性、非线性Tm和MLP模型均为最优,模型性能更好,拟合度更高;其次,在GPS反演大气可降水量中,较常用的单因子线性和GPT2w模型,GA-MLP的Tm模型在长春站的反演精度最高,均方误差精度提升1.1%和4.9%,平均偏差精度提升2.5%和13.2%,证明GA-MLP的Tm模型在东北地区反演PWV的适用性。  相似文献   

7.
大气加权平均温度(Tm)是全球导航卫星系统(global navigation satellite system, GNSS)反演大气水汽(precipitation water vapor, PWV)的关键参数。当前已有Tm模型提供的Tm信息难以捕获其日周期变化,因此限制了其在高时间分辨率GNSS PWV估计中的精度。大气再分析资料可提供高时空分辨率的Tm格点产品,但是在使用时需要对其进行空间插值,且Tm在高程上的变化远大于其在水平方向上变化。同时,针对中国区域地形起伏大等特点,提出顾及垂直递减率的中国区域Tm格点产品空间插值方法,以分布于中国区域的2015年89个探空站资料为参考值,验证了提出的方法在全球大地测量观测系统大气中心Tm格点产品和美国国家航空和太空管理局提供的MERRA-2的Tm格点产品中的空间插值精度。结果表明:(1)在顾及垂直递减率的Tm格点产品空间插值中,反距离加权法的...  相似文献   

8.
地基全球卫星导航系统(GNSS)水汽反演过程中需要大气加权平均温度Tm的参与,而饱和水汽压Es作为Tm计算过程中的一个重要变量影响着Tm,因此Es将会间接地影响大气可降水量(PWV)的反演精度.针对目前地基GNSS水汽反演研究中普遍采用的三种不同的饱和水汽压模型(Magnus-Tetens模型、BUCK模型、Goff-Gratch模型),本文就不同的饱和水汽压模型参与反演是否会引起水汽反演结果的差异进行了研究.以香港为研究区域,利用GAMIT解算了2016年旱雨两季(2、7月)的天顶湿延迟(ZWD),同时利用king's park探空站的探空数据通过数值积分计算得到旱雨两季(2、7月)的Tm,然后严格参照反演步骤编程模拟计算旱雨两季(2、7月)每天的PWV.最后对比并分析了不同饱和水汽压模型参与计算对Tm和PWV的影响及原因,结果表明:三种饱和水汽压模型参与计算得到的PWV与真值(探空站计算得到的PWV)之间不存在具有统计意义的显著性差异,因此均可被用来提供计算Tm时所用到的饱和水汽压Es,但是通过对比分析发现部分研究人员将BUCK模型中的变量T当作露点温度而非大气温度进行计算会使Tm产生较大的误差,进而对该误差进行了不合理性分析.本文的分析将会对后续地基GNSS水汽反演研究中的处理提供一定的参考.   相似文献   

9.
加权平均温度(Tm)是将天顶湿延迟转换为大气可降水量的关键参数,针对青藏高原地区海拔高、地形起伏大、水汽高度分布复杂的特点,本文利用2010—2014年GGOS Atmosphere Tm格网数据和地表高程数据建立Tm垂直递减率函数,进而建立一种顾及Tm垂直递减率变化的适合青藏高原地区的新模型(QTm模型)。此外,利用2015年青藏高原地区14个探空站和GGOS Atmosphere Tm格网数据评估模型精度和适用性。试验结果表明,与GGOS Atmosphere Tm相比,QTm模型的年均Bias和RMSE分别为0.29和2.49 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提升了38.97%、67.06%;与探空数据相比,QTm模型的年均Bias和RMSE分别为0.16和2.90 K,相对于GPT2w-1和GPT2w-5模型分别提升了31.12%、39.46%。新模型的构建为青藏高原地区提供了可靠的Tm值,进而提供实时、高精度GNSS水汽信息。  相似文献   

10.
GPT2w模型在南极地区精度分析   总被引:1,自引:0,他引:1  
孔建  姚宜斌  单路路  王泽民 《测绘学报》2018,47(10):1316-1325
GPT2w(global pressure and temperature 2 wet)是目前应用较为广泛的对流层延迟经验模型之一,可提供气压、温度、水汽压等气象参数。为验证和分析GPT2w模型在南极地区的精度,本文利用分布在南极区域的探空站数据和中国第33次南极科考期间的实测探空气球数据对模型气压、温度、水汽压参数进行分层精度检验。与探空站数据比较发现,在南极地区地面高度上,GPT2w模型精度较高,与全球其他区域精度较为一致;进一步通过对比1月和7月统计结果,发现Bias和RMS呈现出季节特性;同时发现模型在垂直方向存在较大误差,表现为随着高度的增加,精度随之下降并逐步趋于稳定。实测数据对比方面,首先利用ECMWF(European Centre for Medium-range Weather Forecasts)气压分层数据对实测数据的可靠性进行验证,结果显示,实测数据与ECMWF分层数据符合得较好;同时通过比对发现,GPT2w天内精度在地面高度上仍与月平均精度相当,但垂直方向随着高度的增加精度相比于暖季精度会有所下滑,说明未考虑日周期项变化对模型精度存在一定影响。用探空数据计算的对流层延迟(zenith tropospheric delay,ZTD)来分析GPT2w的计算精度,结果表明GPT2w在南极区域ZTD计算精度在厘米级,与全球其他位置计算精度相当。  相似文献   

11.
加权平均温度(T_m)是全球卫星导航系统(GNSS)反演可降水量(PWV)过程中的关键参量。利用Bevis公式和地表温度可以方便地得到地表附近的高精度T_m估计值。然而,不少研究指出,Bevis公式在高海拔地区存在较大误差。本文对Bevis公式在不同高度面的适用性进行研究后发现,Bevis公式在海拔较低时精度较高,随着海拔升高,精度逐渐降低。为了解决Bevis公式在高海拔地区适用性较低的问题,本文对近地空间范围内(本文指0~10 km的高程范围)的T_m与大气温度的关系展开了研究,发现两者在全球范围内都拥有很高的相关性,由此本文构建了基于近地大气温度的全球加权平均温度模型。对模型的检验结果表明,该模型在近地空间范围内的任意高度面上都可以提供高精度的T_m估计值。  相似文献   

12.
大气加权平均温度(Tm)是全球导航卫星系统(GNSS)水汽监测的关键参数。针对中国区域地形起伏较大的特点,本文构建了顾及精细季节变化的Tm垂直递减率函数模型,在此基础上,利用2007—2014年的Global Geodetic Observing System(GGOS)atmosphere格网数据建立了中国区域的Tm格网新模型(简称为CTm模型)。以2015年GGOS格网数据和无线电探空资料为参考值,对CTm模型进行精度检验,并与常用的Bevis公式和GPT2w模型进行比较分析。结果表明:①以GGOS格网数据为参考值,CTm模型的年均偏差和均方根误差(RMS)分别为-0.52 K和3.28 K,相比于GPT2w-5和GPT2w-1模型,精度(RMS值)分别提高了27%和13%;②以探空数据为参考值,CTm模型的年均偏差和RMS误差分别为0.26 K和3.75 K,相对于GPT2w-5和GPT2w-1模型,精度分别提高了21%和16%,尤其在中国西部地区,CTm模型表现出更为显著的优势。此外,将CTm模型用于GNSS水汽计算,其引起的水汽计算RMS误差和相对误差分别为0.29 mm和1.36%。CTm模型不需要实测气象参数,因此,在中国区域的GNSS实时高精度水汽探测中具有重要的应用。  相似文献   

13.
张豹  姚宜斌  许超钤 《测绘学报》2015,44(10):1085-1091
水汽标高是一个反映水汽垂直分布特征的参数,也是全球导航卫星系统(global navigation satellite system,GNSS)对流层天顶湿延迟改正和GNSS水汽层析中的一个辅助参数。本文对2006—2012年水汽标高的时间序列进行频谱分析,发现水汽标高在时间上呈现出年周期和半年周期变化,因此利用包含年周期和半年周期的三角函数来表达水汽的时变规律,然后利用欧洲中尺度天气预报中心(European Centre for Medium-range Weather Forecasting,ECMWF)的数据在全球1°×1°的格网点上分别拟合了三角函数的系数。通过上述方法首次构建了一个全球适用的水汽标高模型GSH,该模型既体现了水汽标高的时变特性又考虑了其地理差异。以无线电探空数据为参考,GSH具有-0.19km的偏差(bias)和1.81km的均方根误差(root mean square error,RMSE);以ECMWF数据为参考,GSH具有0.04km的bias和1.52km的RMSE。GSH整体上表现出了比较稳定的精度,可服务于GNSS气象学研究,也可为其他相关气象研究提供水汽标高参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号