首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mass size distribution of the crustal elements (Al, Ca, Fe, Mg, Si, Ti), anthropogenic elements (Zn, Mn, Cr, Cu, K, P, Pb) and sea elements (Na, Cl) were obtained from measurements carried out with an inertial cascade impactor in Sfax. A fitting procedure by data inversion was applied to those data. This procedure yields accurate size distributions of aerosols in the diameter range 0.1–25 μm in two different sites. In a coastal industrial site, the mass distribution of the aerosol showed a bimodal structure; and in urban area, the lower particle mode cannot be observed. The elemental dry deposition flux was calculated as a function of particle size. The element flux size distribution increased rapidly with particle size. The modelling results indicate that the majority of the crustal and anthropogenic elements flux (>90%) was due to particles larger than 3 μm in diameter.  相似文献   

2.
Inorganic ions and trace metals in total suspended particles were measured during the period 2006–2007 at four sites; three urban sites in the Mexico City Metropolitan Area (MCMA) and one nearby rural site in the state of Morelos. SO42−, NO3, Cl and NH4+ ions were analyzed by ion chromatography; Na+, K+, Ca2+ and Mg2+ by flame atomic absorption spectroscopy, and Al, Cd, Cr, Mn, Pb and V by an atomic absorption spectrometer with a graphite furnace attachment. The results indicated that SO42− was the most abundant ion. All trace elements except Mn and V showed statistically significant differences between sampling sites. Pearson's correlation applied to all data showed a high correlation among SO42−, NO3 and NH4+, indicating a common anthropogenic origin. In addition, the correlation observed between Ca2+ and Al indicated a crustal origin, as supported by the enrichment factors. Over the total sampling period, significant differences in particles and trace metals were found between sites and meteorological seasons. To gain a better insight into the origin of trace metals and major inorganic ions, a Principal Component Analysis was applied to the results for six trace metal and eight inorganic ions.  相似文献   

3.
This study measured the concentration of heavy metal elements in atmospheric aerosol samples collected between July 2004 and April 2006 at a remote site on Mt. Muztagata (38°17'N, 75°01'E, 4430 m), in the Eastern Pamirs. Inductively coupled plasma mass spectroscopy (ICP–MS) results show that the air at Muztagata contains low concentrations of As and heavy metal elements (Cr, Ni, Cu, Zn, Cd, Pb, and Bi), comparable with those in the Arctic — far lower than in heavily populated or industrialized areas. Observed enrichment factor (EF) values greater than 10 for those elements suggest partly anthropogenic sources. Seasonal variations in the concentrations of Zn, Cd, Pb, Bi, and As resemble those of crustal Al, with greater concentrations during the summer but lower ones in winter. Our results reveal that the background atmosphere in remote inner Asia is only weakly affected by anthropogenic pollution, and demonstrate that high heavy metal concentrations occur during summer but with greater EF values during the winter. The air mass back-trajectory analyses suggest that pollution from West Asia, Central Asia, and South Asia are the main possible source areas that contribute to the heavy metals in aerosols at Muztagata.  相似文献   

4.
Cloudwater samples were collected from November 1992 to March 1995 in Vallombrosa, a mountain site of the Tuscan Apennines (central Italy). Chemical analyses show that all examined inorganic ions contributed significantly to the total ionic content (TIC). The ratio SO42−/NO4 ranged from 0.92 to 3.46 and was >1 for 86% of samples. There is a wide range in the chemical composition of the cloudwater. The total ionic content ranged from 640 to 7476 μeq l−1 and pH from 3.17 to 6.22. The liquid water content (LWC) ranged from 0.06 to 0.94 g m−3 and electrical conductivity from 47 to 485 μΩ−1. The total ionic content decreases while the liquid water content increases. Also analyzed were soluble trace metals (Fe, Pb, Cu, Mn, Cd, Al), synthetic anionic surfactants and the methanesulphonic acid. Chemical analyses evidenced in some cases a high concentration of organic matter. The meteorological analysis for a few samples of individual passages was carried out for the possibility of establishing a correspondence between meteorological events and chemical composition. The sources (marine, crustal and anthropogenic) of chemical components were deduced.  相似文献   

5.
《Atmospheric Research》2005,73(1-2):87-100
Coarse (>2.2 μm) and fine (<2.2 μm) atmospheric particulate material samples were collected from an urban area (Al-Hashimya, Jordan), from August 2000 to August 2001 using a “GENT” stack filter unit (SFU). Collected samples were analyzed for 19 elements using inductively coupled plasma mass spectrometry (ICP-MS). The crustal elements exhibit atmospheric concentrations that are comparable to those in urban and industrial areas. The anthropogenic elements, on the other hand, are clearly less abundant in Al-Hashimya than in other industrial regions. Results indicated that, elements of crustal origin are associated with the coarse particles, while elements of anthropogenic origins are more associated with fine particles. Concentrations of crustal-derived elements were higher in summer and those of anthropogenic elements were higher in winter. Crustal enrichment factor calculations showed that concentrations of Pb, Zn, Cd, Sb and Ag are highly enriched and of As, Cu, Co, Ca and Ni are moderately enriched. Factor analysis calculations permitted the identification of four source groups for the fine fraction, namely oil combustion, crustal and urban dust, smelting industries and motor vehicles.  相似文献   

6.
Major ion concentrations and strontium isotopic ratios (87Sr/86Sr) were measured in rainwater samples collected at the urban site of Lanzhou, a city located on the Loess Plateau in the arid and semi-arid areas of northwest China. The rainwater samples possessed alkaline pH, at a reference level of 5.6, with a range of 6.82 to 8.28 and a volume-weighted mean (VWM) pH value of 7.70. The alkaline character of rainwater in Lanzhou is due to the result of neutralization caused by the alkaline soil dusts which contain large amount of CaCO3. It was observed that Ca2+ was the most abundant cation with a VWM value of 886 µeq l− 1 (115–2184 µeq l− 1), accounting for 87.8% of the total cations. Without considering HCO3, SO42− and NO3 were dominant among the anions, accounting for 64.2% and 23.0%, respectively, of the total measured anions. Using Na as an indicator of marine origin and Al for terrestrial inputs, the proportions of sea salt and non-sea-salt elements were estimated from elemental ratios. The precipitation in this region has typical continental characteristics. The Sr concentrations varied from 0.004 to 0.885 µmol l− 1, and strontium isotopic ratios (87Sr/86Sr) lay in the range of 0.71025–0.71302, with an average of 0.71143. The 87Sr/86Sr ratios of Lanzhou rainwater are higher than that of seawater, which reflects contributions from the radiogenic Sr sources of the aerosols. The most suitable candidate for the source would be the soil dust originating from local and distant loess and desert areas. The 87Sr/86Sr ratios were used to characterize different sources of base cations in rainwater, suggesting that the samples could be interpreted in terms of combinations of at least three components: soil dust derived from the Loess Plateau and desert areas in northwest China (with 87Sr/86Sr ~ 0.7130), seawater (with 87Sr/86Sr ~ 0.70917), and anthropogenic inputs (with 87Sr/86Sr ~ 0.7103). The high 87Sr/86Sr ratio and Ca and Sr content in the rainwater from Lanzhou can be attributed to the dissolution of calcium carbonate in soil dust.  相似文献   

7.
In the present study, the precipitation near Büyükçekmece Lake, which is one of the important drinking water sources of Istanbul city, was studied during October 2001–July 2002. Seventy-nine bulk precipitation samples were collected at two sampling stations near the Lake (41°2′35″N, 28°35′25″E and 41°5′30″N, 28°37′7″E). The study comprised the determination of H+, Cl, NO3, SO42−, NH4+, Na, K, Mg, Ca, Al, Ba, Fe, Cu and Mn concentrations in bulk deposition rain event samples. The average volume-weighted pH value was found to be 4.81, which points out that the rain is slightly acidic. High sulfate concentrations were observed together with high H+ ion values. Sulfur emissions were the major cause for the observed high hydrogen ion levels. On the basis of factor analysis and correlation matrix analysis, it has been found that in this region, acid neutralization is brought about by calcium rather than the ammonium ion. The varimax rotated factor analysis grouped the variables into four factors, which are crustal, marine and two anthropogenic sources.  相似文献   

8.
An established three stage sequential leach scheme was applied to a series of selected high volume aerosol samples (n = 35) collected from the Turkish Eastern Mediterranean coastline (Erdemli). Samples were selected according to their air mass back trajectory history to reflect the contrasting mixtures of aerosol material present in the Eastern Mediterranean marine aerosol. Two populations were adopted, those samples which were classed as “anthropogenic” and those which were “Saharan” dominated aerosol populations. Applying the three stage leach it was possible to define the proportion for each of the considered metals (Al, Fe, Cu, Pb, Cd, Zn and Mn) present in the (a) “exchangeable” (b) “carbonate / oxide” and (c) “refractory” phases, representing novel solid state aerosol speciation data for this marine system. Clear trends were established, conforming with data from previous studies with mainly crustal derived metals (Al and Fe) being present in the refractory phases (Al > 88%; Fe > 84%) and those influenced by anthropogenic sources being dominating in the exchangeable phase, although for these metals the variability was comparatively high (12–64%; 19–85%; 40–100% for Zn, Pb and Cd, respectively). For the majority, greater exchangeable fractions were present the lower the crustal source contribution to the aerosol population, whereas the “refractory” fraction exhibited contrasting behaviour. This was illustrated by the novel application of the mixing diagram, presenting each of the three speciation stages against the corresponding percent anthropogenic contribution to each collected sample. Zn, Pb and Cd all illustrated progressive decrease in the percent exchangeable with increasing crustal contribution to the aerosol population. The percent exchangeable was discussed in terms of its use to represent the upper limit of the bioavailable fraction of metal associated with the aerosol, post deposition. The mixing diagram approach enabled the prediction of the residual fractions for Cd, Pb and Zn (41 ± 4%; 62 ± 4% and 82 ± 5%, respectively,) in Saharan end-member material.  相似文献   

9.
Ambient respirable particles (PM10; aerodynamic diameter ≤10 μm) collected in a tropical urban environment (Delhi, India) during December 2008-November 2009 were characterized with respect to 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and 8 major and trace metals (Fe, Mn, Cd, Cu, Ni, Pb, Zn and Cr). Concentrations of Σ16PAHs (annual mean: 74.7 ± 50.7 ng m−3, range 22.1–258.4 ng m−3) and most metallic species were at least an order of magnitude greater than values reported from similar locations worldwide. Seasonal variations in Σ16PAHs were significant (p < 0.001) with highest levels in winter while crustal and anthropogenic metals showed significant but mutually opposite seasonal dependence. Statistically significant associations were observed between chemical species and various meteorological parameters. The PAH profile was dominated by combustion-derived large-ring species (~85%) that were essentially local in origin. Principal component analysis–multiple linear regression (PCA-MLR) apportioned four sources: crustal dust (73%), vehicular emission (21%), coal combustion (4%) and industrial emission (2%) that was further validated by hierarchical cluster analysis (HCA). Temporal trend analysis showed that crustal sources were predominant in summer (p < 0.05) while the remaining sources were most active in winter. Summertime intrusions of Saharan dust were identified with the help of aerosol maps and air parcel backward trajectories. Inhalation cancer risk assessment showed that up to 3,907 excess cancer cases (357 for PAHs, 122 for Cd, 2040 for Cr (VI) and 1387 for Ni) are likely in Delhi considering lifetime inhalation exposure to these chemicals at their current concentrations.  相似文献   

10.
A field study was conducted at a mountain-top site in northwestern Colorado. Supercooled cloud water, collected as a function of droplet size, was analyzed for anions, cations and trace elements. Enrichment factors (EF) of SO 4 2– , K+, Na+ and Cl relative to crustal and marine reference elements (Al and Na) were calculated to determine whether chemical fractionation of the aerosol occurs during cloud droplet formation. The largest EF's for all ions were found for droplets less than 10–15 µm diameter. Ratios of the small to large droplet mean EF's ranged from 1 to 2, for SO 4 2– relative to both Al and Na+, to 10 to 12 for Na+, Cl and K+, relative to Al. EF's of K+ and Cl in the bulk cloud water were in crustal and marine proportions, respectively. It was concluded that although bulk could chemistry may indicate a lack of enrichment of a species, this may not be true throughout the droplet size distribution. The higher enrichments in small droplets is likely a result of their formation on small aerosol particles whereas the large droplets form on the largest aerosol particles. This may suppress EF's in precipitation relative to the total aerosol.  相似文献   

11.

Pre and Post-Monsoon levels of ambient SO2, NO2, PM2.5 and the trace metals Fe, Cu, etc. were measured at industrial and residential regions of the Kochi urban area in South India for a period of two years. The mean PM2.5, SO2 and NO2 concentrations across all sites were 38.98?±?1.38 µg/m3, 2.78?±?0.85 µg/m3 and 11.90?±?4.68 µg/m3 respectively, which is lower than many other Indian cities. There was little difference in any on the measured species between the seasons. A few sites exceeded the NAAQS (define acronym and state standard) and most of the sites exceeded WHO (define acronym and state standard) standard for PM2.5. The average trace metal concentrations (ng/m3) were found to be Fe (32.58)?>?Zn (31.93)?>?Ni (10.13)?>?Cr (5.48)?>?Pb (5.37)?>?Cu (3.24). The maximum concentration of trace metals except Pb were reported in industrial areas. The enrichment factor, of metals relative to crustal material, indicated anthropogenic dominance over natural sources for the trace metal concentration in Kochi’s atmosphere. This work demonstrates the importance of air quality monitoring in this area.

  相似文献   

12.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The apportionment of atmospheric aerosols undertaken in Northern France during two sampling campaigns allowed to determine the influence of the atmospheric contribution of a heavy industrialized urban center on the particulate matter composition at a nearby rural site. The concentrations of major components and trace elements sampled by bulk filtration have been determined on June–July 2000 and January–February 2001, and the comparison of these two campaigns shows very well the importance of wind directions. The sources of 10 trace elements (Al, Ba, Cu, Fe, K, Mn, Pb, Sr, Ti and Zn) and 7 major components (Cl, NO3, SO42−, NH4+, Na, Mg and Ca) are better identified by studying their elemental contribution at each sampling site according to wind sectors. This kind of study shows that the concentrations recorded at the urban sampling site are always higher than those observed at the rural site as well during the summer campaign (about + 35%) as during the winter campaign (+ 90%), because of the predominance of the W–NW wind sector, corresponding to the influence of the urban and industrialized areas.  相似文献   

14.
The concentrations of particulate Polycyclic aromatic hydrocarbons (PAHs) were measured at Gosan, a background site in Korea for 1 year between November 2001 and November 2002. The total concentrations of 14 PAH compounds at Gosan were between 0.52 and 14.76 ng m− 3 and about 3–15 times higher than those at other rural or remote sites in the world. Seasonal trend was observed for particulate PAHs concentrations at Gosan with higher levels during heating season due to increased fossil fuel usage and the movement of air parcels from Asian continent. Principal component factor analysis (PCF) for PAHs showed three factors; combination of coal combustion and vehicular emission, natural gas combustion, and unidentified one. However, PCF for the combined data of PAHs, inorganic ions, and elements revealed that the unidentified factor consists of crustal species, sea salts, and four PAH compounds. Thus, this factor is thought to be transport of crustal species with organics from combustion sources. The major variables which determine the sources of PAHs are the heating season and the movement of air parcels from Asian continent.  相似文献   

15.
Size segregated sampling of aerosol particles at the coal-fired power station Šoštanj, Slovenia was performed by a newly developed system. In addition, simultaneous sampling of particles was performed at two locations, Velenje and Veliki vrh, chosen on the basis of long term monitoring of SO2 in the influential area of power plant. The signature of the power plant (e.g. characteristic size distributions of some typical trace elements) was identified. For elements, like As, Mo, Cd and Ga, which are typical for coal combustion, the highest concentrations were observed in the size range between 1 and 4 μm. For Se and sometimes for Ga two modes were identified, first between 0.1 and 0.5 μm and second between 1 and 4 μm. Ratios between the average concentrations of selected elements in fine and coarse particles collected at Veliki vrh (the most influenced location) and Velenje (usually not influenced by the thermo power station) were significantly higher than 1 in the case of Mo and Se for coarse and fine size range, while for As the ratio was higher than 1 for the coarse fraction. Consequently, Mo, Se and As were found as the most important tracers for the emissions from the investigated source. On the basis of the ratios between the concentrations of elements measured in particles at low and high SO2 concentrations at Veliki vrh, Cd was shown to be a typical tracer as well. Our results definitely showed that size segregated measurements of particles at the source and in the influenced area give more precise information on the influence of source to the surrounding region. It was found that patterns of size distributions for typical trace elements observed at the source are found also in the influenced area, i.e. Veliki vrh.  相似文献   

16.
The atmospheric input is established for almost forty trace and major elements at a coastal site on the North-Western Mediterranean. Comparison with the Rhône River input at the scale of the Gulf of Lions shows that the total atmospheric input dominates for elements of anthropogenic origin such as Cd, Pb, Sb and Zn. Dissolved input of atmospheric origin is very important for these elements and for those of terrigenous origin (Al and Fe). In the coastal zone, both dissolved external sources (atmosphere and Rhône River) can explain the high Mediterranean Surface waters concentrations. Atmospheric input becomes rapidly the predominant factor, while the riverine influence being negligible in the few tens' kilometers outside the river mouth.Paper submitted to the 7th International Symposium of the Commission for Atmospheric Chemistry and Global Pollution on the Chemistry of the Global Atmosphere held in Chamrousse, France, from 5 to 11 September 1990.  相似文献   

17.
The total suspended particulate (TSP) levels at Delhi (north India) were measured on 116 days between February and October 1980. The observations were stratified according to season and the values of cross-correlation of the TSP and its components were evaluated. High TSP (209 g m-3) levels were found during the summer period associated with hot and dry weather in the region and low TSP (109 g m-3) were found during the monsoon period. Most of the TSP mass was associated with natural soil elements, such as Fe, Al, Mn, Ca, and K. Only a fraction of the mass of the TSP was comprised of elements from anthropogenic sources, e.g., Pb, Ni, Cd, Sb, Cu, and Zn. The aerosols at Delhi were potentially basic in nature, unlike those in European countries which are acidic in nature and cause acid rainfall.  相似文献   

18.
The compositions of TSP between AD and NAD storm periods were compared to study their long-term variations and chemical characteristics. TSP samples were collected at Gosan site in Jeju Island of Korea from February to May of 1992–2004. The major ionic and elemental species of TSP aerosols were analyzed. During AD periods, the concentrations of crust components (nss-Ca2+, Al, Fe, Ca, Mg, Ba, Sr, Ti) increased remarkably, and the concentrations of anthropogenic components (nss-SO42−, NO3, S, Zn, Pb, Cr, Ni, Cd), with the exception of NH4+, increased weakly. The concentration ratios of all major components between AD and NAD periods showed ranges from 1.2 to 8.5, except for NH4+. The slope of the linear regression indicated that the contribution of CO32− may have comprised up to 17% of the total anions. Our results suggested that the AD storm greatly influenced TSP compositions. Linear regression analyses indicated that NH4+ was not correlated with NO3, but highly correlated with nss-SO42− during both periods. The nss-SO42− was also correlated with NH4+, K+, nss-Mg2+, and nss-Ca2+ during both periods. Interestingly, NO3 was associated with nss-Ca2+ and nss-Mg2+ during AD periods. Of the metal elements, Fe, Ca, Mg, Ti, Mn, Ba, Sr, V, and Co were highly correlated with Al during both periods, signifying that these metals were mostly originated from soils.  相似文献   

19.
The remarkable wide range spatial scaling of TRMM precipitation   总被引:1,自引:0,他引:1  
The advent of space borne precipitation radar has opened up the possibility of studying the variability of global precipitation over huge ranges of scale while avoiding many of the calibration and sparse network problems which plague ground based rain gage and radar networks. We studied 1176 consecutive orbits of attenuation-corrected near surface reflectivity measurements from the TRMM satellite PR instrument. We find that for well-measured statistical moments (orders 0 < < 2) corresponding to radar reflectivities with dBZ < 57 and probabilities > 10− 6, that the residuals with respect to a pure scaling (power law) variability are remarkably low: ± 6.4% over the range 20,000 km down to 4.3 km. We argue that higher order moments are biased due to inadequately corrected attenuation effects. When a stochastic three — parameter universal multifractal cascade model is used to model both the reflectivity and the minimum detectable signal of the radar (which was about twice the mean), we find that we can explain the same statistics to within ± 4.6% over the same range. The effective outer scale of the variability was found to be 32,000 ± 2000 km. The fact that this is somewhat larger than the planetary scale (20,000 km) is a consequence of the residual variability of precipitation at the planetary scales. With the help of numerical simulations we were able to estimate the three fundamental parameters as α ≈ 1.5, C1 = 0.63 ± 0.02 and H = 0.00 ± 0.01 (the multifractal index, the codimension of the mean and the nonconservation parameter respectively). There was no error estimate on α since although α = 1.5 was roughly the optimum value, this conclusion depended on assumptions about the instrument at both low and high reflectivities. The value H = 0 means that the reflectivity can be modeled as a pure multiplicative process, i.e. that the reflectivity is conserved from scale to scale. We show that by extending the model down to the inner “relaxation scale” where the turbulence and rain decouple (in light rain, typically about 40 cm), that even without an explicit threshold, the model gives quite reasonable predictions about the frequency of occurrence of perceptible precipitation rates.While our basic findings (the scaling, outer scale) are almost exactly as predicted twenty years ago on the basis on ground based radar and the theory of anisotropic (stratified) cascades, they are incompatible with classical turbulence approaches which require at least two isotropic turbulence regimes separated by a meso-scale “gap”. They are also incompatible with classical meteorological phenomenology which identifies morphology with mechanism and breaks up the observed range 4 km–20 000 km into several subranges each dominated by different mechanisms. Finally, since the model specifies the variability over huge ranges, it shows promise for resolving long standing problems in rain measurement from both (typically sparse) rain gage networks and radars.  相似文献   

20.
The chemistry of heavy haze over Urumqi,Central Asia   总被引:1,自引:0,他引:1  
A sampling campaign of aerosols over Urumqi from 2001–2007 and soil samples in the surrounding areas were carried out to investigate the severe air pollution in Urumqi, a typical inland city, located in the center of Asia. Urumqi is one of the heavy polluted cities in the world, as the days of haze spanned over one third of the year and accounted for 60–80% of the heating period for the past 6 years. High concentration of fine aerosols, frequent occurrence, and rapid formation of heavy haze were the three main characteristics. With comparison of the pollution elements, As, Cd, and S, and the ratio of Ca/Al in aerosols and soils in those sites located on the south of Jungger Basin as tracers, it was found that As, Cd, and S highly enriched in the aerosols over urban Urumqi were not only from the re-suspended road dust but also from the soil transported from south of the Jungger Basin. Different from the most cities in China, the high concentration of sulfate in Urumqi was partially from the primary soil dust transported from the surrounding areas. The mixing of the local anthropogenic aerosols with the soil transported from outside the city was the main source of the high sulfate concentration. Ammonium salts were higher than the summed equivalents of SO42−, NO3, and Cl in Urumqi and much higher than that in other Chinese cities. The total water soluble ions and the total ammonium salts were as high as 57.8% and 51.0% in PM2.5. The high concentration of soluble salts with high hygroscopicity, especially ammonium and sulfate salts, were the main factors contributing to the heavy haze over Urumqi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号