首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Cohort abundance of walleye pollock (Theragra chalcogramma) is subject to strong interannual variation in the eastern Bering Sea, and this variation is known to be determined largely at the age-0 stage. We estimated the spatial distributions and densities of age-0 walleye pollock in five nursery areas around the eastern Bering shelf in three successive years (1997–1999) from acoustic survey data. Concurrently, we calculated estimates of the spatial distribution of euphausiids, a major prey of age-0 walleye pollock, and estimates of spatial overlap of groundfish predators with the age-0 walleye pollock. The analyses showed that all nursery areas had low densities of age-0 walleye pollock in 1997, which ultimately produced the weakest adult year-class. In the intermediate year of 1998, age-0 densities were low to medium, and in 1999, which produced the strongest of the three adult year-classes, all nursery areas had medium to high age-0 walleye pollock densities. Euphausiid distributions had a consistently positive spatial relationship with age-0 walleye pollock. Groundfish predator density ratios were positively related to age-0 walleye pollock density when age-0 walleye pollock were displaced relatively northward. Our results suggest that abundance of age-0 walleye pollock, and hence of adult cohorts in the eastern Bering Sea, can be predictable from a concise set of indicators: the densities of age-0 walleye pollock at nursery areas in mid- to late-summer, their spatial relationship to euphausiids and groundfish predators, and the latitudinal trend of their distributions. The 3 years 1997–1999 had significant differences of physical conditions in the eastern Bering Sea, and represent an advantageous framework for testing these hypotheses.  相似文献   

2.
西白令海狭鳕渔场与环境因子关系研究   总被引:1,自引:0,他引:1  
根据2013~2018年白令海海域拖网作业的狭鳕( Theragra chalcogramma)渔获数据以及环境数据,利用GAM模型对CPUE进行了标准化,建立了三个基于不同环境因子的剩余产量模型:(1)基于SST因子的剩余产量模型;(2)基于SST和Chl-a因子的剩余产量模型;(3)基于SST、Chl-a和SSHA因子的剩余产量模型,分析了环境因子对西白令海狭鳕资源的影响。研究表明:基于SST和Ch-a因子的剩余产量模型拟合程度最好,表达式为Cm=0. 9343f-0. 0003 fm^2+0.155Tmfm +0.325 4cam fm,狭鳕资源量的变动受捕捞努力量、渔场SST以及Chl-a控制。分析认为:SST是导致西白令海狭鳕CPUE产生月间波动的最重要的环境因子,Chl-a对狭鳕CPUE也有一定的影响,而SSHA的影响则相对较小。建议将SST以及Chl-a作为狭鳕渔场分析与渔情预报研究的重要环境因子。  相似文献   

3.
Acoustic data and net samples were collected during late spring and early fall 1997–1999 to assess zooplankton and micronekton abundance and distribution relative to the Inner Front at three sampling grids (Port Moller, Cape Newenham and Nunivak Island) on the inner shelf of the southeast Bering Sea. Epibenthic scattering layers were observed during May–June and August–September in all three years. Acoustic data were scaled to euphausiid biomass using target strength models. Mean euphausiid biomass determined acoustically for each transect line was 0.7–21 g m−2, with most values below 5 g m−2. There was no consistent relationship between the distribution and biomass of euphausiids and the location of the Inner Front. Zero age pollock were observed on the inner shelf in August–September during all years, but were confined primarily to the stratified side of the Inner Front and to the frontal regime. The acoustic data for pollock were scaled to biomass using laboratory measurements of gas bladder dimensions and target strength models. Acoustic determinations of mean transect biomass for euphausiids did not differ from literature values for the inner shelf of the southeast Bering Sea, and pollock biomass on the inner shelf did not differ from that around the Pribilof Islands. Despite recent anomalies in climate and oceanographic conditions on the inner shelf, and high mortality of shorttail shearwaters during 1997, we found no evidence of significant interannual differences in the biomass of euphausiids or zero-age pollock on the inner shelf of the southeast Bering Sea.  相似文献   

4.
Two Bering Sea marine research programs collaborated during the final years of the 1990s to forge advances in understanding the southeastern Bering Sea pelagic ecosystem. Southeast Bering Sea Carrying Capacity, sponsored by NOAA Coastal Ocean Program, investigated processes on the middle and outer shelf and the continental slope. The Inner Front Program, sponsored by NSF, investigated processes of the inner domain and the front between the inner and middle domains. The purposes of these programs were to (1) increase understanding of the southeastern Bering Sea ecosystem, including the roles of juvenile walleye pollock, (2) investigate the hypothesis that elevated primary production at the inner front provides a summer-long energy source for the food web, and (3) develop and test annual indices of pre-recruit pollock abundance. The observations occurred during a period of unusually large variability in the marine climate, including a possible regime shift. Sea-ice cover ranged from near zero to one of the heaviest ice years in recent decades. Sea-surface temperatures reached record highs during summer 1997, whereas 1999 was noted for its low Bering Sea temperatures. Moreover, the first recorded observations of coccolithophore blooms on the shelf were realized in 1997, and these blooms now appear to be persistent. The programs’ results include an archive of physical and biological time series that emphasize large year-to-year regional variability, and an Oscillating Control Hypothesis that relates marine productivity to climate forcing. Further investigations are needed of the confluences of interannual and even intra-seasonal variability with low-frequency climate variability as potential producers of major, abrupt changes in the southeastern Bering Sea ecosystem.  相似文献   

5.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   

6.
We have developed and run a model with sufficiently high resolution (9 km and 45 levels) and a large enough spatial domain to allow for realistic representation of flow through the narrow and shallow straits in the northern Bering Sea. This is potentially important for quantification of long-term mean and time-dependent ocean circulation, and water mass and property exchanges between the Pacific and Arctic Oceans. Over a 23 year interval (1979–2001), mean transport through Bering Strait is estimated to be 0.65 Sv. Comparison of our model results with published observations indicates that ocean circulation is not only variable at seasonal to interdecadal scales but it is also responsive to short-term atmospheric forcing. One of such events occurred during the winter of 2000–2001 with reversed oceanic flow in some areas and much reduced sea-ice cover. Analyses of eddy kinetic energy fields identify some high biological productivity regions of the Chirikov Basin coincident with persistent high energy (up to 2700 cm2 s−2 in the surface layer and up to 2600 cm2 s−2 at mid-depth) throughout the annual cycle. Model output in the Bering Strait region is validated against several time series of moored observations of water mass properties. Comparison with shipboard observations of near-bottom salinity from late winter through autumn indicates that the model reasonably represents the major water-mass properties in the region. The modeled vertical water-column structure in the northern Bering Sea allows increased understanding of the mechanisms of water transformation and transport northward through Bering Strait into the Chukchi and Beaufort Seas. We conclude that the long-term model results for the northern Bering Sea provide important insights into the ocean circulation and fluxes and they are a useful frame of reference for limited observations that are short-term and/or cover only a small geographic region.  相似文献   

7.
Control of walleye pollock (Theragra chalcogramma) recruitment in the Eastern Bering Sea involves complex interactions between bottom-up and top-down processes, although the mechanisms are poorly understood. We used statistical models to test the leading hypotheses linking recruitment variability to biotic and abiotic factors. Consistent with a “cold-pool hypothesis”, recruitment of pollock was significantly stronger if winters preceding the larval (age-0) and juvenile stages (age-1) were mild. However, our results did not support the proposed top-down mechanism (cannibalism) underlying this hypothesis. Several empirical relationships support an “oscillating control hypothesis”. As predicted by it, the effect of ice conditions on survival during the larval and early juvenile stages was modified by the abundance of adult pollock, implying stronger bottom-up control when adult abundance (hence cannibalism) was low. The proposed bottom-up mechanism predicts that the survival of pelagic-feeding walleye pollock (benthic-feeding yellowfin sole), should be higher during years with an early (late) ice retreat, which was confirmed by our analysis. Our results also provide additional evidence for a “larval transport hypothesis”, which states that cannibalism of larval and juvenile pollock is reduced in years when strong northward advection separates juveniles from cannibalistic adults.In addition to testing existing hypotheses, we identified new relationships between spawner-to-recruit survival rates of walleye pollock and several indicators of mixed layer dynamics during the spring and summer. Survival rates and recruitment were significantly reduced when larval or early juvenile stages experienced a delay in the (non-ice-associated) spring bloom as a result of stormy spring conditions, suggesting that the timing of the spring bloom is critical to both first-feeding larvae and age-1 juveniles. Furthermore, a dome-shaped relationship between pollock survival and summer wind mixing at the early juvenile stage is consistent with modeling and laboratory studies showing an increase in survival at low to moderate levels of wind mixing, but a decrease in feeding success at high levels of wind mixing.Top-down controls also regulate recruitment of walleye pollock. At least one-third of the variability in spawner-to-recruit survival could be accounted for by predation mortality at the early juvenile stage (age-1). Predation of juvenile pollock can be attributed largely to cannibalism, which varies with the abundance of adult pollock and with the availability of juveniles to adult predators. A simple index reflecting the spatial overlap between juvenile and adult pollock explained 30–50% of the overall variability in recruitment, similar to the variability explained by the best environmental predictors. Although environmental effects are difficult to separate from the effects of predation, we conclude that bottom-up and top-down processes are equally important in controlling the survival of pollock from spawning to recruitment at age 2. However, the magnitude of top-down control is itself modified by environmental factors that control the availability of juvenile pollock to adults (through impacts on spatial distribution) and the abundance of adult predators (through effects on productivity and carrying capacity).  相似文献   

8.
The distribution, size, length-specific weight, growth, and feeding of age-0 walleye pollock (Theragra chalcogramma) were examined along with their prey distribution patterns in two contrasting transects over a 4-year period (1994–1997) in relation to biophysical properties of frontal regions around the Pribilof Islands, Bering Sea. There were significant interannual differences in catch of age-0 pollock, but transect and habitat differences (inshore vs. front vs. offshore) were not significant for either catch or size of pollock. There were significant variations in length-specific weight and growth of pollock, but the trends were inconsistent. Copepods dominated the zooplankton biomass in all habitats and years; there were no consistent differences in the densities of the dominant zooplankton taxa among the habitats. There were, however, strong habitat and transect differences in juvenile pollock diet, particularly for the larger and presumably rarer prey taxa (euphausiids, chaetognaths, fish). We did not find any evidence that occupying a particular habitat was beneficial to young pollock, although other factors (e.g. bioenergetic advantage and predation refuge) that we did not examine here could have been more variable and critical to pollock survival. In a physically dynamic system such as the Pribilof Islands, age-0 pollock may need to continuously search for optimal conditions of high prey availability and low predation pressure.  相似文献   

9.
A review of oceanographic and climate data from the North Pacific and Bering Sea has revealed climate events that occur on two principal time scales: a) 2–7 years (i.e. El Niño Southern Oscillation, ENSO), and b) inter-decadal (i.e. Pacific Decadal Oscillation, PDO). The timing of ENSO events and of related oceanic changes at higher latitudes were examined. The frequency of ENSO was high in the 1980s. Evidence of ENSO forcing on ocean conditions in the North Pacific (Niño North conditions) showed ENSO events were more frequently observed along the West Coast than in the western Gulf of Alaska (GOA) and Eastern Bering Sea (EBS). Time series of catches for 30 region/species groups of salmon, and recruitment data for 29 groundfish and 5 non-salmonid pelagic species, were examined for evidence of a statistical relationship with any of the time scales associated with Niño North conditions or the PDO. Some flatfish stocks exhibited high autocorrelation in recruitment coupled with a significant step in recruitment in 1977 suggesting a relationship between PDO forcing and recruitment success. Five of the dominant gadid stocks (EBS and GOA Pacific cod, Pacific hake and EBS and GOA walleye pollock) exhibited low autocorrelation in recruitment. Of these, Pacific hake, GOA walleye pollock and GOA Pacific cod exhibited significantly higher incidence of strong year classes in years associated with Niño North conditions. These findings suggest that the PDO and ENSO may play an important role in governing year-class strength of several Northeast Pacific marine fish stocks.  相似文献   

10.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

11.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

12.
The water under the main thermocline in the Japan Sea is a single water mass referred to as the Japan Sea Proper Water. It can be defined as having temperature below 2.0°C, salinity above 34.00%, and dissolved oxygen below 7.0 ml 1−1. In the north most of the water above the potential temperature 0.1°C depth (about 800–1000 m) is a mode water, with σθ of 27.32 to 27.34 kg m−3. North of 40°N it has high oxygen (more than 6.00 ml 1−1) with a distinct discontinuity (oxygen-cline) at the bottom of the mode water. The most probable region for the formation of the water is the area north of 41°N between 132° and 134°E. The deeper water probably is formed in the norther area of 43°N, and directly fills the main part of the Japan Basin north of 41°N and east of 134°E.  相似文献   

13.
Henry's law constants were determined for α- and γ-hexachlorocyclohexane (HCH) as a function of temperature (0.5–45°C) in artificial seawater (SW; 30‰) and distilled water (DW) using the gas stripping method. Water samples (1–5 ml) were withdrawn from the stripping vessel during the stripping process (30–360 h), solvent extracted and analyzed by gas chromatography—electron-capture detection. The effect of bubbling depth was checked to ensure that bubbles leaving the system were at equilibrium with HCHs in the aqueous phase. Henry's law constants determined at 35 and 45°C in SW were significantly higher (P≤ 0.05) than in DW for both α- and γ-HCH, but not at lower temperatures. The slopes (m) and intercepts (b) of log H vs. 1 / T plots were: α-HCH (DW, 0.5–45°C); m = −2810 ± 110, B = 9.31 ± 0.38; α-HCH (SW, 0.5–23°C); M = −2969 ± 218, B = 9.88 ± 0.76; γ-HCH (DW, 0.5–45°C); M = −2382 ± 160, B = 7.54 ± 0.54; γ-HCH (SW, 0.5–23°C); M = −2703 ± 276, B = 8.68 ± 0.96. Henry's law constants determined in this study compared well with those calculated from reported vapor pressure and solubility data.  相似文献   

14.
The ampeliscid amphipod community in the Chirikov Basin of the northern Bering Sea was a focus of study during the 1980s because they were a major food for the Eastern North Pacific (ENP) population of gray whales Eschrichtius robustus. Information from the 1980s benthic investigations, published accounts of ENP gray whale population trends and the occurrence in 1999–2000 of an unusual number of gray whale mortalities prompted concern that the whale population may have exceeded the carrying capacity of its food base. Therefore, during two cruises per year between June and September, 2002 and 2003, we resampled the 20 stations occupied during the 1980s, to determine if there had been any significant changes in ampeliscid abundance and biomass. During 2002–2003, average ampeliscid dry weight biomass was about 28±10 g m−2 (95% confidence interval), a decline of nearly 50% from maximum values in the 1980s. Amphipod length measurements indicated that the declines were due mainly to the absence of the larger animals (20–30 mm length). Two hypotheses were considered regarding the amphipod declines: gray whale predation and climate. Ampeliscid production (105 kcal m−2 yr−1) and gray whale energy requirements (1.6×108 kcal individual−1 yr−1) indicated that as little as 3–6% of the current estimate of the ENP gray whale population could remove 10–20% of the annual ampeliscid production from the study site in 2002–2003, a finding consistent with the hypothesis that top-down control by foraging whales was the primary cause of the observed declines. A 10-yr time series of temperature near the bottom in the Bering Strait and northward transport did not reveal a consistent trend between 1990 and 2001, suggesting that climate influences were not the major cause of the observed declines. Arctic ampeliscids have slow growth rates and long generation times; therefore the ampeliscid community may require decades to recover to densities observed in the 1980s. Predicted warming trends in the northern Bering Sea could impact ampeliscid recovery by lowering primary production or altering the community composition of the benthos.  相似文献   

15.
Long-term variations of the sea surface salinity (SSS), air temperature (AT) and sea surface temperature (SST) of the Bohai Sea during 1960–1997 were analyzed. They all showed positive trends. The trends of the annual mean SSS, AT and SST of the Bohai Sea were, respectively, 0.074 y−1, 0.024°C y−1 and 0.011°C y−1. The increases of AT and SST were consistent with, the recent warming in northern China, in the Huanghai Sea (Yellow Sea) and in the East China Sea. The rise of SSS can be attributed to the rapid reduction of the total river discharge into the Bohai Sea, as well as to the increase inflow of high salinity water from the Huanghai Sea. It may also be attributed to increasing human use of river water and increases in evaporation from the sea surface. These changes in the marine environment seemed to have important influence on the Bohai Sea ecosystem.  相似文献   

16.
Partial molar volumes of the major salts of seawater found in diluted seawater and in pure water are experimentally determined at temperatures of 5°C, 15°C and 25°C. The range of salinity investigated, which is not purely oceanographic, is the link between pure water and seawater in the World Ocean.The partial molar volumes were determined by using the procedure of Poisson and Chanu (1976). An empirical relation is given, linking the partial molar volumes of the salts or major ions of seawater in pure water with those measured in seawater, within the salinity range 0–40 g kg−1 and the temperature range 0–25°C.  相似文献   

17.
Transient tracer data (tritium, CFC11 and CFC12) from the southern, central and northwestern Weddell Sea collected during Polarstern cruises ANT III-3, ANT V-2/3/4 and during Andenes cruise NARE 85 are presented and discussed in the context of hydrographic observations. A kinematic, time-dependent, multi-box model is used to estimate mean residence times and formation rates of several water masses observed in the Weddell Sea.Ice Shelf Water is marked by higher tritium and lower CFC concentrations compared to surface waters. The tracer signature of Ice Shelf Water can only be explained by assuming that its source water mass, Western Shelf Water, has characteristics different from those of surface waters. Using the transient nature of tritium and the CFCs, the mean residence time of Western Shelf Water on the shelf is estimated to be approximately 5 years. Ice Shelf Water is renewed on a time scale of about 14 years from Western Shelf Water by interaction of this water mass with glacial ice underneath the Filchner-Ronne Ice shelf. The Ice Shelf Water signature can be traced across the sill of the Filchner Depression and down the continental slope of the southern Weddell Sea. On the continental slope, new Weddell Sea Bottom Water is formed by entrainment of Weddell Deep Water and Weddell Sea Deep Water into the Ice Shelf Water plume. In the northwestern Weddell Sea, new Weddell Sea Bottom Water is observed in two narrow, deep boundary currents flowing along the base of the continental slope. Classically defined Weddell Sea Bottom Water (θ ≤ −0.7°C) and Weddell Sea Deep Water (−0.7°C ≤ θ ≤ 0°C) are ventilated from the deeper of these boundary currents by lateral spreading and mixing. Model-based estimates yield a total formation rate of 3.5Sv for new Weddell Sea Bottom Water (θ = −1.0°C) and a formation rate of at least 11Sv for Antarctic Bottom Water (θ = −0.5°C).  相似文献   

18.
Walleye pollock (Theragra chalcogramma) is an ecologically and economically important groundfish in the eastern Bering Sea. Its population size fluctuates widely, driving and being driven by changes in other components of the ecosystem. It is becoming apparent that dramatic shifts in climate occur on a decadal scale, and these “regime shifts” strongly affect the biota. This paper examines quantitative collections of planktonic eggs and larvae of pollock from the southeastern Bering Sea during 1976–1979. Mortality, advection, and growth rates were estimated, and compared among the years encompassing the 1970s’ regime shift. These data indicate that pollock spawning starts in late February over the basin north of Bogoslof Island. Over the shelf, most spawning occurs north of Unimak Island near the 100 m isobath in early or mid April. Pollock eggs are advected to the northwest from the main spawning area at 5–10 cm/sec. Larvae are found over the basin north of Bogoslof Island in April, and over the shelf between Unimak Island and the Priblof Islands in May. Compared to 1977, the spawning period appeared to be later in 1976 (a cold year) and earlier in 1978 (a warm year) in the study area. At the lower temperatures in 1976, egg duration would be longer and thus egg mortality would operate over a longer period than in the other years. Mean larval growth appeared to be lower in 1976 than in 1977 and 1979. Estimated egg mortality rate in 1977 was 0.6 in April and 0.3 in early May.  相似文献   

19.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

20.
In order to investigate total organic carbon (TOC) exchange through the Strait of Gibraltar, samples were taken along two sections from the western (Gulf of Cádiz) and eastern (Western Alboran Sea) entrances of the Strait and at the middle of the Strait in April 1998. TOC was measured by using a high-temperature catalytic oxidation method. The results referenced here are based on a three-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, Mediterranean outflow and an interface layer in between. All layers were characterised by a decrease of TOC concentrations from the Gulf of Cádiz to the Western Alboran Sea: from 60–79 to 59–66 μM C in the Atlantic inflow and from 40–60 to 38–52 μM C in the Mediterranean waters, respectively. TOC concentrations in the modified North Atlantic Central Water varied from 43 to 55 μM C. Intermediate TOC values were measured in the interface layer (43–60 μM C). TOC concentrations increased from the middle of the Strait towards continents indicating a contribution of organic carbon of photosynthetic origin along Spain and Morocco coasts or TOC accumulation due to upwelling in the northeastern part of the Strait. Our results indicate that the short-term variability caused by the tide greatly impacts the TOC distribution, particularly in the Gulf of Cádiz. The TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from 0.9×104 to 1.0×104 mol C s−1 (or 0.28×1012 to 0.35×1012 mol C year−1, respectively). This estimate suggests that the TOC inflow and outflow through the Strait of Gibraltar are two and three orders of magnitude higher than reported via the Turkish Straits and Mediterranean River inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号