首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 406 毫秒
1.
全波形激光雷达的回波中携带了被测目标的距离与特征信息,为了获取这些信息,本文提出了一种回波分解方法。本方法将原始的全波形回波分解为几个独立的高斯脉冲,并得到其函数表达式,从而提取出被测目标的距离等信息。分解过程中,首先,采用可变阈值的经验模态分解滤波法(EMD-soft)对原始波形进行滤波和噪声水平评估;其次,采用一套应对多种波形组成的初始参数估计方法,获取后续拟合所需的初始参数;最后,采用LM(Levenberg-Marquardt)优化算法对回波进行拟合优化,从而获取全波形回波中包含的独立高斯脉冲及其函数表达式。仿真波形的分解实验表明,分解误差在0.1 ns量级,换算成距离误差为15 mm,通过实验室自制的全波形激光雷达实验系统获取的回波的分解实验表明,分解的距离误差小于0.1 m。对比另外两种高斯分解方法对于相同仿真与实验数据的分解结果可以看出,本方法在分解成功率与精度上都有较大的提高。回波分解后的独立高斯脉冲中,除距离外还含有被测目标的反射率、粗糙度、面型等丰富的信息,回波分解方法作为回波分析的基础,将在遥感、测绘等生产与科研领域中发挥非常重要的作用。  相似文献   

2.
LM(Levenberg-Marquardt)算法是全波形机载激光雷达(Li DAR)数据高斯分解中求解模型参数的一种方法。针对其结果在一定程度上依赖初值、雅克比矩阵出现非数值导致无结果等问题,本文提出分组LM算法,以广义高斯混合函数为模型,模型参数初始化后,将参数分组并使用LM算法依次对各组参数进行优化,并生成点云。为验证结果的可靠性,以系统点云为参考,与基于改进的EM(Expectation Maximum)算法全波形分解法做对比。结果表明,本方法不仅得到较高质量的点云,而且得到回波位置和宽度等信息。  相似文献   

3.
波形分解是机载激光雷达全波形数据处理的重要基础工作,通过求解波形函数模型的参数,将波形数据利用具体的函数模型拟合出来,实现对全波形及其中各个子波形函数表达。LM(Levenberg-Marquardt)算法及其改进的算法是波形分解中对参数进行拟合求解的常用方法。针对LM算法在参数拟合计算的过程中存在大量迭代和矩阵运算,提出了基于线程块组和线程两级并行粒度的并行计算方案。将串行多次循环迭代求解参数改为单次并行计算取最佳值实现对参数的选择,将矩阵运算进行线程块的协同并行计算,实现了LM算法在通用计算图形处理器上的并行计算。实验证明,在规定阈值条件下,并行LM降低了算法的迭代次数,提高了波形分解LM算法的计算效率,为提高波形分解的处理效率提供了研究思路。  相似文献   

4.
全波形激光雷达后向散射回波,通过分解返回波形获取多种地物属性信息,在森林结构参数反演方面具有显著的优势,但是,当波形变形或者存在饱和度和前向散射时,高斯分量参数确定不准确以及有效波形起始位置不准确,降低波形分解精度。本文采用高斯混合模型对波形进行拟合,利用期望最大算法估计混合模型参数,抑制高斯分量初值敏感问题,特别是在大范围树高估算且要求一定精度的时候,以确定波形分解并且反演树高。本算法基于C++编程实现,实验结果表明,高斯混合模型能较好地拟合GLAS波形数据且对树高提取精度提升明显,该方法有着很好的有效性、稳定性和精确性。  相似文献   

5.
目前常用的小光斑机载LiDAR波形数据与系统点云数据的来源相关性较大,波形数据的优势难以严格定量地评价和比较。LeicaALS60机载LiDAR系统记录的全波形数据与点云数据相对独立,点云数据来自硬件系统脉冲探测方法,而波形数据是未加处理的原始回波序列。本文对原始波形数据进行分解获取发射脉冲的全部回波,与系统探测点云进行了定量对比,并选取典型林区和城区数据,得到波形在两种地物类型中垂直信息获取能力的定量表征参数。结果表明,波形数据对不同地物类型均能丰富垂直结构信息和提高点云垂直分辨率,且这种提高在林区表现优于城区人工建筑和裸地;激光对树木冠层的穿透能力更明显地表现在回波波形信息中,相较于传统点云激光雷达,全波形LiDAR在森林垂直参数获取方面潜力更大。  相似文献   

6.
随着数据存储能力和处理速度的提高,小光斑机载激光雷达系统已经可以通过数字化采样来存储整个反射波形,而不仅仅是由系统提取出来的三维坐标(即离散点云).分析波形数据最重要的优点之一是可以在后处理过程中让使用者自己来提取三维坐标.一般的分解方法基于非线性最小二乘的多项式拟合,或者有设备厂商提供的简单阈值法,无法获得高精度的分解结果.本文使用改进的EM脉冲检测算法得到回波脉冲的位置和宽度,证明是一种性能可靠、精度较高的波形分解算法.  相似文献   

7.
张良  姜晓琦  周薇薇  张帆 《测绘科学》2018,(3):148-153,160
针对传统的LM波形分解算法在GLAS大光斑波形数据处理中容易陷于局部最优解,限制了GLAS大光斑激光雷达数据在森林结构参数反演方面应用的问题,该文结合GLAS大光斑数据特征,引进优化后的EM算法对大光斑全波形数据进行分解,获取波形参数最优值。结合波形前缘长度和波形后缘长度,建立树高反演模型,并与LM分解算法建立的模型进行对比分析。研究结果表明,通过改进的EM算法对GLAS大光斑激光雷达数据进行处理,波形特征参数的获取更为精确,达到了较高的树高反演精度。  相似文献   

8.
全波形LiDAR数据分解的可变分量高斯混合模型及RJMCMC算法   总被引:1,自引:1,他引:0  
赵泉华  李红莹  李玉 《测绘学报》2015,44(12):1367-1377
传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布,并以此建立理想的波形模型;定义用于控制理想模型与实际波形拟合程度的能量函数,用吉布斯分布构建或然率;根据贝叶斯定理构建刻画波形分解的后验概率模型;设计可逆跳转马尔科夫链蒙特卡洛(reversible jump Markov chain Monte Carlo,RJMCMC)算法模拟该后验概率模型,以确定波形分解数并同时完成波形分解。为了验证提出算法的正确性,分别对不同区域的ICESat-GLAS波形数据进行了波形分解试验,定性和定量分析结果验证了本文方法的有效性、可靠性和准确性。  相似文献   

9.
基于激光雷达波形数据的点云生产   总被引:5,自引:1,他引:4  
随着数据存储能力和处理速度的提高,小光斑机载激光雷达系统现在已经可以通过数字化采样来存储整个反射波形,而不仅仅是由系统提取出来的3维坐标(即离散点云).分析波形数据最重要的优点之一是可以在后处理过程中让使用者自己来提取3维坐标.一般的分解方法基于波形的局部最大值和波形的重心,或者有设备厂商提供的简单阈值法,无法获得高精度的分解结果.本文使用改进的EM脉冲检测算法来得到回波脉冲的位置和宽度,并能得到高质量的点云数据,为DSM(Digital Surface Model)和DTM(Digital Terrain Model)生产提供优质数据源.  相似文献   

10.
LiDAR全波形数据可以记录发射激光脉冲与地物作用形成的后向散射信号的全回波信息,是发射激光脉冲沿途遇到的所有目标回波信号的总和,揭示了地物的几何和物理属性,是地物分类的重要依据。然而目前基于全波形分解的地物分类研究较少。本文将LIDAR全波形数据分解成波宽、振幅、回波次数三个独立的属性,并分别将这三个属性与高程进行格网化,生成一幅含有四个图层的图像。然后使用SVM分类器对这幅图像进行分类,成功分出了房屋、地面、高大植被,分类精度96.2482%,kappa 0.9281。  相似文献   

11.
机载激光测深去卷积信号提取方法的比较   总被引:1,自引:1,他引:0  
为提高机载激光测深信号提取的精度,在测深波形数据处理中引入去卷积信号提取方法,即利用去卷积对波形进行预处理,再对去卷积后的波形实现峰值检测,以精确确定测深信号位置。通过定义性能评定指标对维纳滤波去卷积、非负最小二乘、理查德森-露西去卷积、盲源去卷积4种常用去卷积算法的信号复原能力进行对比分析,并对去卷积信号提取方法的信号检测能力进行验证。试验结果表明,理查德森-露西去卷积算法能够显著提高测深信号分辨率,且算法适应性强,成功率高;相比传统的峰值检测方法,去卷积信号提取方法具有更高的信号检测率、精度和更广的测深范围。  相似文献   

12.
采用Levenberg Marquardt的逐步递进波形分解方法   总被引:1,自引:0,他引:1  
针对机载全波形Li DAR波形数据分解问题,提出一种采用Levenberg Marquardt的逐步递进波形分解方法。该方法基于Levenberg Marquardt的非线性最小二乘拟合算法,选取高斯函数模型并采用逐步递进的波形分解方式得到准确的模拟波形。对Riegl数据中的2条典型波形进行分解实验,并与普通非线性最小二乘方法的结果进行对比分析,证明该方法是可行有效的。  相似文献   

13.
机载激光雷达波形数据横向高斯分解方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对机载激光雷达波形数据分解易受噪声影响,高斯组分个数及叠加波初始参数估计不精确等问题,提出了一种横向高斯波形分解方法。该方法首先对波形进行滤波平滑处理,剔除背景噪声后,将检测到的波峰划分为不同的类型,分别估计其初始参数;然后横向逐步迭代分解估计初始高斯分量,在去除无效的初始高斯分量后,利用列文伯格-马夸尔特(Levenberg-Marquardt)算法进一步优化参数;最后解算得到分解点云。实验结果表明,该方法能有效地检测各种类型的回波信号,对叠加波形具有良好的适应性,并能在一定程度上保护弱波。相比系统点云,本文方法解算的点云在数量和细节上更具有优势,反映了更加丰富的地物垂直结构信息以及在森林参数获取方面的应用潜力。  相似文献   

14.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

15.
郭金权  李国元  裴亮  么嘉棋  聂胜 《遥感学报》2022,26(8):1674-1684
激光测高仪回波波形饱和现象客观存在,为增加可用激光点数目、提高饱和波形测高精度,本文提出了一种波形饱和识别与测高误差改正方法,首先,利用回波波形峰度系数对饱和波形进行识别,然后,针对饱和现象对波形高斯拟合的影响,计算高斯拟合波形与原始波形相交区域的形心位置,以形心位置差异确定因波形饱和导致的测高误差并改正。最后,采用ICESat/GLAS(Ice,Cloud and land Elevation Satellite/Geo-science Laser Altimeter System)在青海湖、纳木错、色林错采集的波形数据进行实验。结果表明,经本文算法改正后数据误差均值为0.03 m,大型湖泊区域可实现约0.05 m的测高精度,结合峰度的饱和识别方法可以对波形进行有效筛选,可发现GLAS遗漏的饱和波形,饱和改正算法可以有效改正波形饱和引起的测高误差,改正后精度明显优于GLAS提供的饱和改正结果,相关结论对高分七号卫星激光波形处理有一定参考价值。  相似文献   

16.
Full-waveform topographic LiDAR data provide more detailed information about objects along the path of a laser pulse than discrete-return (echo) topographic LiDAR data. Full-waveform topographic LiDAR data consist of a succession of cross-section profiles of landscapes and each waveform can be decomposed into a sum of echoes. The echo number reveals critical information in classifying land cover types. Most land covers contain one echo, whereas topographic LiDAR data in trees and roof edges contained multi-echo waveform features. To identify land-cover types, waveform-based classifier was integrated single-echo and multi-echo classifiers for point cloud classification.The experimental area was the Namasha district of Southern Taiwan, and the land-cover objects were categorized as roads, trees (canopy), grass (grass and crop), bare (bare ground), and buildings (buildings and roof edges). Waveform features were analyzed with respect to the single- and multi-echo laser-path samples, and the critical waveform features were selected according to the Bhattacharyya distance. Next, waveform-based classifiers were performed using support vector machine (SVM) with the local, spatial features of waveform topographic LiDAR information, and optical image information. Results showed that by using fused waveform and optical information, the waveform-based classifiers achieved the highest overall accuracy in identifying land-cover point clouds among the models, especially when compared to an echo-based classifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号