首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Bromine and iodine are important tracers for geochemical and environmental studies. In this study, a rapid acid digestion (HNO3 + HF) with ammonia dilution for the simultaneous determination of bromine and iodine in soils and sediments using ICP‐MS was developed. The recoveries of Br and I were controlled by the synergic effect of temperature and time. It took only 15 min at 140 °C for the complete recovery of Br and I in sediment (GSD‐2) and soil (GSS‐24) reference materials, which is a process that needs 2–6 h at 90 °C. A serious loss of Br and I was found at a higher digestion temperature of 190 °C. A 5% v/v NH4OH dilution effectively eliminated the memory effects and stabilised the signals of Br and I. Moreover, ammonia dilution also avoided the corrosiveness of HF on the sample introduction system and torch of ICP‐MS. Tellurium is a more suitable internal standard element than In in the ammonia medium. To avoid the adsorption of residues of dissolution on Te, addition of Te should be carried out after centrifuging the solution. The developed method was successfully applied to determine Br and I in fifty‐three Chinese soil and sediment reference materials. This simple method shows great potential for the rapid determination of Br and I in large batches of geological and environmental samples commonly analysed for mineral exploration and environmental geochemistry studies.  相似文献   

2.
The study of Te, As, Bi, Sb and Se (TABS) has increased over the past years due to their use in the development of low‐carbon energy technologies. However, there is a scarcity of mass fraction values of TABS in geological reference materials. This underlines the difficulty in undertaking routine determinations of these elements. The mass fractions of TABS were determined in geological reference materials using hydride generation‐atomic fluorescence spectrometry (HG‐AFS), calibrated with standard solutions. Comparisons with literature values were used to validate the method. Samples from the GeoPT proficiency test were also analysed. For most elements, there are no assigned or even provisional values for many of the GeoPT and reference materials because of the wide range of results reported. For mass fractions above the quantification limit of the method, our results are in good agreement with the median of GeoPT results. Thus, we propose GeoPT median values as informational values for these elements. In contrast, at mass fractions < 0.5 µg g?1 median values of Se from GeoPT are systematically higher than our results. Our Se results are in agreement with the reference materials down to 0.02 µg g?1, which suggest that many of the results for Se reported in GeoPT testing are too high.  相似文献   

3.
The influence of the mixtures HF‐HNO3 and HF‐NH4F‐HNO3 in bomb digestion for trace element determination from different rock types was studied using ICP‐MS. It is shown that the HF concentration, not the ratio of reagents in the decomposing mixture, controls the digestion process of a rock. Data for Zr in the granite G‐2 as a function of HF concentration gave the same results as reaction mixtures of various compositions. A complete digestion in 50‐mg sample bombs was achieved by 1.0 ml of HF alone, or with a mixture of other acids at a HF concentration of at least 35% m/m at 196 °C over 18 h. The results of the analysis of basalts BCR‐1, BIR‐1, mica schist SDC‐1, shale SBC‐1, granites G‐2, SG‐1A, garnet‐biotite plagiogneiss GBPg‐1, rhyolite RGM‐1, granodiorite GSP‐1, trachyandesite MTA‐1 and rhyolite MRh‐1 are given and compared against available data. The reproducibility of the element determinations by ICP‐MS and XRF as an independent non‐destructive analysis for a quality check in the range of concentrations typical for routine rock samples is given.  相似文献   

4.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

5.
A new olivine reference material – MongOL Sh11‐2 – for in situ analysis has been prepared from the central portion of a large (20 × 20 × 10 cm) mantle peridotite xenolith from a ~ 0.5 My old basaltic breccia at Shavaryn‐Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration. Approximately 10 g of 0.5–2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA‐ICP‐MS, SIMS and bulk analytical methods (ID‐ICP‐MS for Mg and Fe, XRF, ICP‐MS) for major, minor and trace elements at six institutions world‐wide. The results show that the olivine fragments are sufficiently homogeneous with respect to major (Mg, Fe, Si), minor and trace elements. Significant inhomogeneity was revealed only for phosphorus (homogeneity index of 12.4), whereas Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index of 1–2). The presence of some mineral and fluid‐melt micro‐inclusions may be responsible for the inconsistency in mass fractions obtained by in situ and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information values for twenty‐seven major, minor and trace elements.  相似文献   

6.
Trace element concentrations in gold grains from various geological units in South Africa were measured in situ by field emission‐electron probe microanalysis (FE‐EPMA), laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and synchrotron micro X‐ray fluorescence spectroscopy (SR‐μ‐XRF). This study assesses the accuracy, precision and detection limits of these mostly non‐destructive analytical methods using certified reference materials and discusses their application in natural sample measurement. FE‐EPMA point analyses yielded reproducible and discernible concentrations for Au and trace concentrations of S, Cu, Ti, Hg, Fe and Ni, with detection limits well below the actual concentrations in the gold. LA‐ICP‐MS analyses required larger gold particles (> 60 μm) to avoid contamination during measurement. Elements that measured above detection limits included Ag, Cu, Ti, Fe, Pt, Pd, Mn, Cr, Ni, Sn, Hg, Pb, As and Te, which can be used for geochemical characterisation and gold fingerprinting. Although LA‐ICP‐MS measurements had lower detection limits, precision was lower than FE‐EPMA and SR‐μ‐XRF. The higher variability in absolute values measured by LA‐ICP‐MS, possibly due to micro‐inclusions, had to be critically assessed. Non‐destructive point analyses of gold alloys by SR‐μ‐XRF revealed Ag, Fe, Cu, Ni, Pb, Ti, Sb, U, Cr, Co, As, Y and Zr in the various gold samples. Detection limits were mostly lower than those for elements measured by FE‐EPMA, but higher than those for elements measured by LA‐ICP‐MS.  相似文献   

7.
This work provides a measurement procedure for the complete digestion of rock samples containing refractory minerals such as zircon and chromite. Their dissolution by wet acid digestion is often incomplete but, although providing complete digestions, alkali fusion techniques can result in solutions with a high blank and total dissolved solid content. It was established by the systematic study with reference material trachyandesite MTA‐1 that a 1:6 sample to sodium peroxide (Na2O2) ratio is conservative for the complete digestion and recovery of all the analytes especially those contained in zircon. The sample decomposition time was 120 min for the zircon‐bearing rhyolite reference material MRH‐1. Complete digestion of chromite was obtained in the harzburgite RM MUH‐1. The sample solutions were stable for at least 1 year. Accurate measurements of SiO2, Al2O3, TiO2, P2O5 and K2O could be made with ICP‐MS by not discarding the supernatant of the sinter solution and by using geological reference materials for external calibration. HF digestions are slow, not universal, and may form new mineral/phases that are insoluble under high temperature conditions. The validated sample decomposition procedure combined with ICP‐MS presents an alternative to the use of HF in routine analysis of difficult to digest geological materials.  相似文献   

8.
Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) was examined as a tool for measuring isotopic variation as a function of ablation depth in unpolished zircon from an Archaean metasediment specimen. This technique was able to identify micrometre‐thin (> 3 μm) isotopically distinct mineral domains characterised by ca. 100 Myr younger 207Pb/206Pb ages associated with 2s age uncertainties as low ~ 0.2%, as well as elevated U content relative to grain interiors (up to an order of magnitude). Our calculated drilling rate suggests that each laser pulse excavated depths of ~ 0.06 μm. Ages resolved through the LA‐ICP‐MS methods overlap the 2s uncertainties of 207Pb/206Pb ages measured using SIMS depth profiling on the same zircon population. The rims were further evinced by the detection of relative enrichment (> 3 orders of magnitude) in REE in the outermost micrometres of the same zircon, measured using a different and independent LA‐ICP‐MS depth profiling technique. We propose a LA‐ICP‐MS U–Pb technique capable of quickly identifying and quantifying rims, which are indication of late, yet geologically significant, fluid events that are otherwise undefined.  相似文献   

9.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

10.
A measurement procedure for the rapid acquisition of U‐Pb dates for detrital zircons by quadrupole LA‐ICP‐MS was developed. The procedure achieves a threefold increase in measurement efficiency compared with the most commonly used methods. Utilising reduced background counting times and a shortened ablation period, a throughput of ~ 130 measurements/h can be achieved. The measurement procedure was characterised and validated using data from thirty‐nine sessions acquired over a twelve‐month period. Systematic measurement error in 206Pb/238U dates for reference materials used for quality control with ages between 28.2 and 2672 Ma was < 1.5%. Average measurement uncertainty, including both random and systematic components, was 1–4% (2s). Interrogation of time‐resolved calculated dates and signal intensities for each measurement allows for the detection and elimination of portions of measurements exhibiting age heterogeneities, zoning, lead loss and contamination by common lead. The measurement procedure diminishes the need to acquire cathodoluminescence imagery for routine detrital zircon applications further increasing throughput and reducing cost. The utility of the measurement procedure is demonstrated by the measurement of samples previously characterised by LA‐MC‐ICP‐MS.  相似文献   

11.
A procedure is described for the determination of thirty‐seven minor and trace elements (LILE, REE, HFSE, U, Th, Pb, transition elements and Ga) in ultramafic rocks. After Tm addition and acid sample digestion, compositions were determined both following a direct digestion/dilution method (without element separation) and after a preconcentration procedure using a double coprecipitation process. Four ultramafic reference materials were investigated to test and validate our procedure (UB‐N, MGL‐GAS [GeoPT12], JP‐1 and DTS‐2B). Results obtained following the preconcentration procedure are in good agreement with previously published work on REE, HFSE, U, Th, Pb and some of the transition elements (Sc, Ti, V). This procedure has two major advantages: (a) it avoids any matrix effect resulting from the high Mg content of peridotite, and (b) it allows the preconcentration of a larger trace element set than with previous methods. Other elements (LILE, other transition elements Cr, Mn, Co, Ni, Cu, Zn, as well as Ga) were not fully coprecipitated with the preconcentration method and could only be accurately determined through the direct digestion/dilution method.  相似文献   

12.
Round 23 of the GeoPT international proficiency testing scheme included the ferromanganese nodule powder FeMn‐1 which was distributed as an additional sample (23A). The aim of this initiative was to assess overall analytical performance for such a challenging oxide matrix with a view to the possible certification of such a material in accordance with ISO Guide requirements. To investigate inter‐method discrepancies, precision data and the method means for the most frequently used analytical methods (XRF, ICP‐MS and ICP‐AES) and sample preparation techniques were calculated and then compared using statistical tests of equivalence. For most major elements, XRF and ICP‐AES data dominated and these were found to give equivalent results. In contrast, for most trace elements significant discrepancies were detected between data obtained by different analytical methods. Possible causes are discussed with a view to attributing their origin to calibration strategy, sensitivity or interferences. It is assumed that the unusual oxide matrix generated unexpected interferences and thus method bias. Discrepancies observed between data from different analytical methods provide valuable information for the participating analysts, helping them to avoid systematic errors and thus minimising bias. They also suggest actions necessary to improve results for any future certification of such a material.  相似文献   

13.
LA‐ICP‐MS U–Pb detrital zircon studies typically analyse 50–200 grains per sample, with the consequent risk that minor but geologically important age components (e.g., the youngest detrital zircon population) are not detected, and higher abundance age components are misrepresented, rendering quantitative comparisons between samples impossible. This study undertook rapid U–Pb LA‐ICP‐MS analyses (8 s per 18–47 μm diameter spot including baseline and ablation) of zircon, apatite, rutile and titanite using an aerosol rapid introduction system (ARIS). As the ARIS resolves individual single pulses at fast sampling rates, spot analyses require a high repetition rate (> 50 Hz) so the signal does not return to baseline and mass sweep times (> 80 ms) that span several laser pulses (i.e., major undersampling of the signal). All rapid U–Pb spot analyses employed 250–300 pulses, repetition rates of 53–65 Hz (total ablation times of 4.1–5.7 s) and low fluence (1.75–2.5 J cm?2), resulting in pit depths of ca. 15 μm. Zircon, apatite, rutile and titanite reference material data yield an accuracy and precision (2s) of < 1% for pre‐Cenozoic reference materials and < 2% for younger reference materials. We present a detrital zircon data set from a Neoproterozoic tillite where > 1000 grains were analysed in < 3 h with a precision and accuracy comparable to conventional LA‐ICP‐MS analytical protocols, demonstrating the rapid acquisition of huge detrital data sets.  相似文献   

14.
A rapid sample preparation procedure is described to determine trace element compositions of peridotites using LA‐ICP‐MS. Peridotite powders were fused with albite in a molybdenum–graphite assembly to obtain homogeneous glasses. Best conditions for the fusion procedure (heating at 1500–1550 °C for 10–15 min with a sample‐to‐flux ratio of 1:2) were constrained with melting experiments on two USGS reference materials, PCC‐1 and DTS‐2B. Mass fractions of first series transition elements, Ba and Pb, in quenched glasses of PCC‐1 and DTS‐2B are consistent with published data within 10% RSD. Three spinel peridotite xenoliths from eastern China were analysed following both our method and conventional solution ICP‐MS. Compared with solution ICP‐MS, the relative deviations of our method for most elements were within 10%, while for the REE, Ta, Pb, Th and U, the relative deviations were within 20%. In particular, volatile elements (e.g., Pb and Zn) are retained in the glass. Compared with conventional wet chemistry digestion, our method is faster. Additional advantages are complete sample fusion, especially useful for samples with acid‐resistant minerals (spinel and rutile), and long‐term conservation of glasses allowing unlimited repeated measurements with microbeam techniques. The same approach can be used for analyses of other mantle rocks, such as eclogites and pyroxenites.  相似文献   

15.
A new proficiency testing sample, OPY‐1 (ultramafic rock), the basis of the twentieth international proficiency test of analytical geochemistry laboratories (GeoPT 20), was recently prepared by the International Association of Geoanalysts (IAG). This paper reports analytical data for Os, Ir, Ru, Rh, Pt and Pd with different digestion techniques, including an improved Carius tube, Carius tube combined with HF dissolution and alkaline fusion. About 4–15% of the PGEs are in the silicate phase, which cannot be leached by aqua regia even when digested at 300 °C with the Carius tube technique. Both the Carius tube technique combined with HF dissolution and alkaline fusion can obtain reliable data. The results demonstrated that OPY‐1 is sufficiently homogeneous at a 2 g test portion level to be suitable as a reference material for method validation. The procedure for sealing the Carius tube was simplified and the recommended digestion procedures are provided.  相似文献   

16.
Trace elements from samples of bauxite deposits can provide useful information relevant to the exploration of the ore‐forming process. Sample digestion is a fundamental and critical stage in the process of geochemical analysis, which enables the acquisition of accurate trace element data by ICP‐MS. However, the conventional bomb digestion method with HF/HNO3 results in a significant loss of rare earth elements (REEs) due to the formation of insoluble AlF3 precipitates during the digestion of bauxite samples. In this study, the digestion capability of the following methods was investigated: (a) ‘Mg‐addition’ bomb digestion, (b) NH4HF2 open vessel digestion and (c) NH4F open vessel digestion. ‘Mg‐addition’ bomb digestion can effectively suppress the formation of AlF3 and simultaneously ensure the complete decomposition of resistant minerals in bauxite samples. The addition of MgO to the bauxite samples resulted in (Mg + Ca)/Al ratios ≥ 1. However, adding a large amount of MgO leads to significant blank contamination for some transition elements (V, Cr, Ni and Zn). The NH4HF2 or NH4F open vessel digestion methods can also completely digest resistant minerals in bauxite samples in a short period of time (5 hr). Unlike conventional bomb digestion with HF/HNO3, the white precipitates and the semi‐transparent gels present in the NH4HF2 and NH4F digestion methods could be efficiently dissolved by evaporation with HClO4. Based on these three optimised digestion methods, thirty‐seven trace elements including REEs in ten bauxite reference materials (RMs) were determined by ICP‐MS. The data obtained showed excellent inter‐method reproducibility (agreement within 5% for REEs). The relative standard deviation (% RSD) for most elements was < 6%. The concentrations of trace elements in the ten bauxite RMs showed agreement with the limited certified (Li, V, Cr, Cu, Zn, Ga, Sr, Zr and Pb) and information values (Co, Ba, Ce and Hf) available. New trace element data for the ten RMs are provided, some of which for the first time.  相似文献   

17.
Three synthetic reference glasses were prepared by directly fusing and stirring 3.8 kg of high‐purity oxide powders to provide reference materials for microanalytical work. These glasses have andesitic major compositions and are doped with fifty‐four trace elements in nearly identical abundance (500, 50, 5 µg g?1) using oxide powders or element solutions, and are named ARM‐1, 2 and 3, respectively. We further document that sector‐field (SF) ICP‐MS (Element 2 or Element XR) is capable of sweeping seventy‐seven isotopes (from 7Li to 238U, a total of sixty‐eight elements) in 1 s and, thus, is able to quantify up to sixty‐eight elements by laser sampling. Micro‐ and bulk analyses indicate that the glasses are homogeneous with respect to major and trace elements. This paper provides preliminary data for the ARM glasses using a variety of analytical techniques (EPMA, XRF, ICP‐OES, ICP‐MS, LA‐Q‐ICP‐MS and LA‐SF‐ICP‐MS) performed in ten laboratories. Discrepancies in the data of V, Cr, Ni and Tl exist, mainly caused by analytical limitations. Preliminary reference and information values for fifty‐six elements were calculated with uncertainties [2 relative standard error (RSE)] estimated in the range of 1–20%.  相似文献   

18.
The complete dissolution of representative test portions of powdered rock samples for the determination of the mass fractions of trace elements by ICP‐MS relies either on aggressive and time‐consuming acid digestions or fusion/sintering with appropriate fluxes. Here, we evaluate a microwave oven dissolution method that employs a solution of NH4HF2 and HNO3. The entire procedure occurs in a closed vessel system and takes up to 4 h. In hundreds of digestions, the precipitation of fluorides was never observed. Replicate decomposition of 100 mg of twenty‐one international reference materials (RMs) of igneous rocks, and also one of a shale presented mostly satisfactory recoveries of forty‐one trace elements. Important exceptions were Zr and Hf in G‐2 and GSP‐2 (mean recoveries of ca. 70%), although for four other felsic rock RMs, the digestion was complete. For ultramafic rock RMs, we present Cr results that indicate quantitative dissolution of Cr‐bearing phases. We discuss the findings and conclude that advances in sample preparation of geological materials for instrumental analysis would benefit from a better understanding of how specific characteristics, such as composition and crystallinity of certain minerals, may affect their reactivity.  相似文献   

19.
We present in this article a rapid method for B extraction, purification and accurate B concentration and δ11B measurements by ID‐ICP‐MS and MC‐ICP‐MS, respectively, in different vegetation samples (bark, wood and tree leaves). We developed a rapid three‐step procedure including (1) microwave digestion, (2) cation exchange chromatography and (3) microsublimation. The entire procedure can be performed in a single working day and has shown to allow full B recovery yield and a measurement repeatability as low as 0.36‰ (± 2s) for isotope ratios. Uncertainties mostly originate from the cation exchange step but are independent of the nature of the vegetation sample. For δ11B determination by MC‐ICP‐MS, the effect of chemical impurities in the loading sample solution has shown to be critical if the dissolved load exceeds 5 μg g?1 of total salts or 25 μg g?1 of DOC. Our results also demonstrate that the acid concentration in the sample loading solution can also induce critical isotopic bias by MC‐ICP‐MS if chemistry of the rinsing‐, bracketing calibrator‐ and sample solutions is not thoroughly adjusted. We applied this method to provide a series of δ11B values of vegetal reference materials (NIST SRM 1570a = 25.74 ± 0.21‰; NIST 1547 = 40.12 ± 0.21‰; B2273 = 4.56 ± 0.15‰; BCR 060 = ?8.72 ± 0.16‰; NCS DC73349 = 16.43 ± 0.12‰).  相似文献   

20.
A method was developed for the determination of low‐level rare earth elements (REEs) and thorium in ultramafic samples by inductively coupled plasma‐mass spectrometry. The conventional method for the digestion of ultramafic rocks using HNO3 and HF results in considerable amounts of insoluble fluorides because of the high contents of Mg (generally up to 24% m/m) in these rocks. In this study, we used H3BO3 as a complexing agent to break down the insoluble fluorides, and then separated the REEs from Fe and Mg major and Ba, Ca, Cr minor matrices by anion exchange and co‐precipitation, respectively. The whole procedural blanks estimated from sample‐free analyses ranged from 0.232 ng for Ce to 0.006 ng for Tm and Lu. Limits of detection for this method, defined as three times the standard deviation of these blank analyses, varied from 0.51 ng g?1 for Ce to 0.03 ng g?1 for Lu. The recovery of REEs using this technique, as determined using the standard addition method, ranged from 92.9% for Y to 102.0% for Er with 3% (RSD) variation. The method was validated using GAS (GeoPT‐12), JP‐1 and PCC‐1, and the results were comparable to literature values, elucidating the applicability to the determination of ultra trace REEs in ultramafic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号