首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A measurement procedure for the rapid acquisition of U‐Pb dates for detrital zircons by quadrupole LA‐ICP‐MS was developed. The procedure achieves a threefold increase in measurement efficiency compared with the most commonly used methods. Utilising reduced background counting times and a shortened ablation period, a throughput of ~ 130 measurements/h can be achieved. The measurement procedure was characterised and validated using data from thirty‐nine sessions acquired over a twelve‐month period. Systematic measurement error in 206Pb/238U dates for reference materials used for quality control with ages between 28.2 and 2672 Ma was < 1.5%. Average measurement uncertainty, including both random and systematic components, was 1–4% (2s). Interrogation of time‐resolved calculated dates and signal intensities for each measurement allows for the detection and elimination of portions of measurements exhibiting age heterogeneities, zoning, lead loss and contamination by common lead. The measurement procedure diminishes the need to acquire cathodoluminescence imagery for routine detrital zircon applications further increasing throughput and reducing cost. The utility of the measurement procedure is demonstrated by the measurement of samples previously characterised by LA‐MC‐ICP‐MS.  相似文献   

2.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

3.
We have developed new analytical procedures to measure precise and accurate 238U–206Pb and 235U–207Pb ages for young (~ 1 Ma) zircons using laser ablation‐ICP‐mass spectrometry. For young zircons, both careful correction for the background counts and analysis of very small Pb/U ratios (i.e., 206Pb/238U < 0.00016 and 207Pb/235U < 0.0001 for 1 Ma zircons) are highly desired. For the correction of the background, the contribution of the background signal intensities for the analytes, especially for the residual signal intensities for 206Pb and 207Pb, was defined through laser ablation of synthesised zircons (ablation blank) containing negligible Pb. The measured signal intensities for 202Hg, 206Pb and 207Pb signals obtained by the ablation blank were slightly higher than those obtained by data acquisition without laser ablation (gas blank). For the wider dynamic range measurements on Pb/U ratios, an attenuator device for the ion detection system was employed to extend the capability to monitor high‐intensity signals (i.e., > 3 Mcps). Through the attenuator device, the ion currents were reduced to 1/450 of the signal intensity without the attenuator. Because the switching time for the attenuator was shorter than 1 ms, signal intensities for only specific isotopes could be reduced. With attenuation of the 238U signal, counting statistics on 206Pb and 207Pb isotopes could be improved and counting loss on the 238U signal could be minimised. To demonstrate the reliability of this new analytical technique, 238U–206Pb and 235U–207Pb ages for three young zircon samples (collected from Osaka Group Pink Volcanic Ash, Kirigamine and Bishop Tuff) were measured. The data presented here demonstrate clearly that the present technique could become a major analytical tool for in situ U–Pb age determination of young zircons (~ 1 Ma).  相似文献   

4.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

5.
LA‐ICP‐MS U–Pb detrital zircon studies typically analyse 50–200 grains per sample, with the consequent risk that minor but geologically important age components (e.g., the youngest detrital zircon population) are not detected, and higher abundance age components are misrepresented, rendering quantitative comparisons between samples impossible. This study undertook rapid U–Pb LA‐ICP‐MS analyses (8 s per 18–47 μm diameter spot including baseline and ablation) of zircon, apatite, rutile and titanite using an aerosol rapid introduction system (ARIS). As the ARIS resolves individual single pulses at fast sampling rates, spot analyses require a high repetition rate (> 50 Hz) so the signal does not return to baseline and mass sweep times (> 80 ms) that span several laser pulses (i.e., major undersampling of the signal). All rapid U–Pb spot analyses employed 250–300 pulses, repetition rates of 53–65 Hz (total ablation times of 4.1–5.7 s) and low fluence (1.75–2.5 J cm?2), resulting in pit depths of ca. 15 μm. Zircon, apatite, rutile and titanite reference material data yield an accuracy and precision (2s) of < 1% for pre‐Cenozoic reference materials and < 2% for younger reference materials. We present a detrital zircon data set from a Neoproterozoic tillite where > 1000 grains were analysed in < 3 h with a precision and accuracy comparable to conventional LA‐ICP‐MS analytical protocols, demonstrating the rapid acquisition of huge detrital data sets.  相似文献   

6.
Matrix‐matched reference materials are necessary for accurate microbeam U‐Pb dating and Hf isotopic determination. This study introduces the RMJG rutile as a new potential reference material, which was separated from Palaeoproterozoic pelitic granulites collected in Hebei Province, China. LA‐ICP‐MS measurements indicate the RMJG rutile has extremely low Th (< 0.003 ± 0.01 µg g?1) and common Pb contents, but high Hf (102 ± 34 µg g?1), U (61 ± 11 µg g?1), and radiogenic Pb (~ 20 µg g?1) contents. Moreover, the rutile yields relatively constant U‐Pb ages and Hf isotopic data. The LA‐ICP‐MS analyses suggest that this rutile has a concordant U‐Pb age with a statistical mean 206Pb/238U and 207Pb/235U ages of 1749.9 ± 32.1 Ma and 1750.0 ± 26.4 Ma, respectively (2s), which are statistically indistinguishable from its ID‐TIMS ages (1750.6 ± 8.4 and 1750.1 ± 4.7 Ma). Precise determination of the 176Hf/177Hf ratio by MC‐ICP‐MS in solution mode (0.281652 ± 0.000006) is in good agreement with the statistical mean of the LA‐MC‐ICP‐MS measurements (0.28166 ± 0.00018). Therefore, the limited variations of RMJG U‐Pb age and Hf isotopic composition together with its extremely low common Pb and high Hf, U and Pb contents make it an ideal calibration and monitor reference material for LA‐ICP‐MS measurements.  相似文献   

7.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   

8.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

9.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   

10.
Detrital zircon (DZ) U‐Pb laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) has revolutionised the way geologists approach many Earth science questions. Although recent research has focused on rapid sample throughput, acquisition rates are limited to 100–300 analyses h?1. We present a method to acquire zircon U‐Pb dates at rates of 120, 300, 600 and 1200 analyses h?1 (30, 12, 6 and 3 s per analysis) by multi‐collector LA‐ICP‐MS. We demonstrate the efficacy of this method by analysing twelve zircon reference materials with dates from ~ 3465 to ~ 28 Ma. Mean offset from high‐precision dates increases with faster rates from 0.9% to 1.1%; mean random 1s uncertainty increases from 0.6% to 1.3%. We tested this new method on a sandstone sample previously characterised by large‐n DZ geochronology. Quantitative comparison shows increased correspondence among age distributions comprising > 300 dates. This new method holds promise for DZ geochronology because (a) it requires no major changes to hardware, but rather modifications to software; (b) it yields robust age distributions well‐suited for quantitative analysis and maximum depositional age calculations; (c) there is only a minor sacrifice of accuracy and measurement uncertainty; and (d) there is less burden to researchers in terms of time investment and analytical cost.  相似文献   

11.
Research in 2006 and 2007 dealing with laser ablation‐(multicollector)‐inductively coupled plasma‐mass spectrometry, LA‐(MC)‐ICP‐MS, involved studies concerned with optimising the technique itself, as well as applying the method to a variety of problems in the Earth sciences. The causes of elemental and isotopic fractionation produced during laser ablation continues to be of considerable interest, with evidence mounting that processes occurring both at the ablation site and in the argon plasma of the ICP are culpable. There is growing excitement in the use of femtosecond lasers for LA‐(MC)‐ICP‐MS, with the hope that they reduce or eliminate melting and non‐congruent volatilisation at the ablation site and thus approach stoichiometric sampling. Ablation chamber design emerged as a serious concern, particularly with respect to achieving the rapid washout needed for fine‐scale compositional mapping of geological objects. LA‐MC‐ICP‐MS provided data for a wide range of isotopic systems, especially hafnium, but also B, S, Mg, Cu, Fe, Sr, Nd, Pb and U. Measurement uncertainties in LA‐ICP‐MS were discussed by several researchers, and are critically reviewed here ‐ total uncertainties for trace element concentration measurements of silicates including errors on the calibration values of common reference materials are ~10% (95% confidence limits), though the precision of individual spot measurements (50 to 100 μm) is much better, ~1% RSD, using a 193 nm laser and a sector field‐ICP‐MS. LA‐ICP‐MS U‐Pb ages for zircon and other U‐rich accessory phases are claimed by most geoanalysts to have 2s uncertainties of ~0.7 and 1.3% respectively but the actual accuracy of the method is probably only as good as ~2% (2s), when uncertainties associated with laser‐induced Pb/U fractionation are included.  相似文献   

12.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   

13.
A combined geochronological and geochemical investigation for the same domain of zircon provides valuable information on timing and genesis, particularly in the case of multi‐growth metamorphic zircon. A high spatial resolution concurrent analytical method for zircon U‐Pb age and rare earth element content was successfully achieved in this study, using a multi‐collector secondary ion mass spectrometer (SIMS) at a ~ 8 μm diameter scale. Special instrument parameters were employed, including a high mass resolution of approximately 15000 applied to replace the previous energy filter method, and a dynamic multi‐collector mode used to reduce the measurement time to 18 min per analysis. Six zircon reference materials yielded precise and accurate 206Pb/238U ages, which are comparable to those obtained by the ordinary mono‐collector method, but with 2–3 times higher spatial resolution. All zircon grains measured in this study showed enriched heavy‐REE (HREE) contents consistent with previously reported values determined by LA and solution ICP‐MS methods. The light‐REE (LREE) mass fractions measured using both SIMS and LA‐ICP‐MS methods in this study, although with quite different volume, show consistent results within uncertainties.  相似文献   

14.
The LA‐ICP‐MS U‐(Th‐)Pb geochronology international community has defined new standards for the determination of U‐(Th‐)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID‐TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA‐ICP‐MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data‐reporting standards are defined to help improve the peer‐review process. With these improvements, LA‐ICP‐MS U‐(Th‐)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.  相似文献   

15.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

16.
Three synthetic reference glasses were prepared by directly fusing and stirring 3.8 kg of high‐purity oxide powders to provide reference materials for microanalytical work. These glasses have andesitic major compositions and are doped with fifty‐four trace elements in nearly identical abundance (500, 50, 5 µg g?1) using oxide powders or element solutions, and are named ARM‐1, 2 and 3, respectively. We further document that sector‐field (SF) ICP‐MS (Element 2 or Element XR) is capable of sweeping seventy‐seven isotopes (from 7Li to 238U, a total of sixty‐eight elements) in 1 s and, thus, is able to quantify up to sixty‐eight elements by laser sampling. Micro‐ and bulk analyses indicate that the glasses are homogeneous with respect to major and trace elements. This paper provides preliminary data for the ARM glasses using a variety of analytical techniques (EPMA, XRF, ICP‐OES, ICP‐MS, LA‐Q‐ICP‐MS and LA‐SF‐ICP‐MS) performed in ten laboratories. Discrepancies in the data of V, Cr, Ni and Tl exist, mainly caused by analytical limitations. Preliminary reference and information values for fifty‐six elements were calculated with uncertainties [2 relative standard error (RSE)] estimated in the range of 1–20%.  相似文献   

17.
We report homogeneity tests on large natural apatite crystals to evaluate their potential as U reference materials for apatite fission‐track (AFT) thermochronology by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). The homogeneity tests include the measurements of major element concentrations by electron probe microanalysis (EPMA), whereas for U concentration, isotope dilution (ID) ICP‐MS and laser ablation (LA) ICP‐MS were employed. Two apatite crystals are potential reference materials for LA‐ICP‐MS analysis: a 1 cm3 fraction of a Durango crystal (7.5 μg g?1 U) and a 1 cm3 Mud Tank crystal (6.9 μg g?1 U). The relative standard deviation (1 RSD) of the U concentration determined by ID‐ICP‐MS of both apatite crystals was ≤ 1.5%, whereas 1 RSD for the LA‐ICP‐MS results was better than 4%, providing sufficient homogeneity for fission‐track dating. The results on the U homogeneity for two different apatite samples are an important step towards establishing in situ dating routines for AFT analysis by LA‐ICP‐MS.  相似文献   

18.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   

19.
Using a state‐of‐the‐art 193 nm‐LA‐MC‐ICP‐MS system and with careful control of analytical procedures, the long term external reproducibility and accuracy of the ages Phanerozoic zircons measured over a period of months using calibrator bracketing for the 206Pb/238U and 207Pb/206Pb ages were ca. 1% (2 RSD) if a single reference zircon was used for the matrix‐matched calibration. When different reference zircons were used for the calibration, suspicious systematic shifts in the obtained ages were observed and thus a reduction in the overall accuracy of the dating method became obvious. Such shifts were within a few percent range of the U‐Pb and Pb/Pb ages and seemed to vary independently of zircon age and composition. A “test of accuracy” experiment was conducted reducing instrumental effects as far as possible by analysing five different reference zircons mounted on a single mount eight times during the same session. An identical protocol was used for all analyses, with unchanged instrument parameters and with ion beam intensities kept as identical as possible. For data reduction, every zircon served consecutively as the reference zircon for calibration, with the others in the batch treated as unknowns. The known reference age and the four calculated ages obtained using the four other RMs for calibration were then compared. Even using such a strict analytical protocol, shifts in 206Pb/238U, 207Pb/235U and 207Pb/206Pb ratios were still present. They varied non‐systematically and ranged from ?4.35% to 3.08% for the investigated age range (1065 Ma to 226 Ma). Assuming the absence of instrumental effects (i.e., memory, dead‐time correction, non‐linearity of ion counters and interdetector calibration, crystallographic orientation, ablation cell geometry and setup, gas flows), the observed shifts were attributed to matrix and/or ablation related effects. It is proposed that non‐spectral matrix effects in the Ar plasma torch resulted in non‐uniform signal enhancement (or depression?) leading to shifts both in elemental and Pb isotopic ratios. Additionally, the ablated particle size distribution could be an important factor controlling plasma conditions and thus mass bias and fractionation. Until such effects are well understood and controlled, it would seem that any LA‐ICP‐MS zircon U‐Pb and 207Pb/206Pb age determination cannot be meaningfully interpreted at below a ca. 3% to 4% (2 RSD) confidence level.  相似文献   

20.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号