首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Computer flow simulations using the HEC-2 step-backwater routine are used to demonstrate the effect of systematically varying river channel width, riffle spacing and channel roughness on the shear velocity, section-mean velocity and energy slope in fixed-bed pool-riffle sequences. Initial scaling is obtained by utilizing published information on hydraulic parameters within reaches of the River Severn. Subsequently this restriction is relaxed and the effect of varying parameter combinations within realistic limits is explored. The purpose of this exercise is to isolate those scenarios which may preclude or promote the occurrence of a competence ‘reversal’, such that pools scour at high flow whilst deposition occurs on riffles. It is concluded that rivers in which pools are hydraulically rougher than riffles are likely to demonstrate a competence reversal. For prescribed conditions, the critical discharge at which a reversal occurs is a negative function of riffle spacing and riffle width relative to pool width. Downstream variation in hydraulic roughness also has implications for the phase relationship of shear velocity maxima and minima in relation to the extremes in pool-riffle topography.  相似文献   

3.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Flemming  Burg 《Ocean Dynamics》2022,72(11):801-815

Based on field and experimental evidence, the average initial spacing (seed wavelength) of flow-transverse bedforms (ripples and dunes) appears to lie between 80 and 130 grain diameters (L = 80–130Dmm). Starting with an average initial spacing of L = 100Dmm, subsequent bedform growth proceeds by amalgamation of two successive bedforms, which results in a doubling of the spacing in each step. Geometric principles dictate that the combined volume of two smaller bedforms lacks about 40% of the volume required for a fully developed amalgamated bedform. The missing volume is gained by excavation of the troughs, i.e., by lowering the base level. Where base level lowering is prevented by the presence of a coarse-grained armor layer or hard ground pavement, the larger amalgamated bedform remains sediment starved. In its simplest form, bedform growth proceeds by continuous doubling of the spacing in response to increases in flow velocity, the process being reversible in response to flow decelerations. Bedform growth terminates when the shear velocity (u*) at the crest reaches the mean settling velocity (ws) of the sediment. At this point, 40% of the bed material is in suspension, at which point the missing volume can no longer be compensated by trough excavation. In shallow water, maximum bedform size is dictated by the water depth, whereas in deep water, bedforms can potentially grow to their ultimate size. Evaluation of bedform data from deep water settings suggests that the largest two-dimensional, flow-transverse bedforms in terms of grain size (phi) can be approximated by the equations: lnLmax = 13.72–4.03Dphi and lnHmax = 9.95–3.47Dphi for grain sizes <  ~ 0.2 mm (> ~ 2.32 phi), with L and H representing bedform spacing and height in meters and D the grain size in phi. For grain sizes >  ~ 0.2 mm (< ~ 3.23 phi), the corresponding relationships are lnLmax = 6.215–0.69 Dphi and lnHmax = 3.18–0.56Dphi, with notations as before, or in terms of grain diameters in mm: Lmax = 5 × 105Dmm.

  相似文献   

6.
Average pool spacing between five and seven bankfull widths has been documented in environments throughout the world, but has limited theoretical justification in coarse‐bedded and bedrock environments. Pool formation in coarse‐bedded and bedrock channels has been attributed to bedrock and boulder constrictions. Because the spacing of these constrictions may be irregular in nature, it is difficult to reconcile pool‐formation processes with the supposedly rhythmic spacing of pools and riffles. To address these issues, a simulation model for pool and riffle formation is used to demonstrate that semi‐rhythmic spacing of pools with an approximate spacing of five to seven bankfull widths can be recreated from a random distribution of obstructions and minimum pool‐ and riffle‐length criteria. It is assumed that a pool–riffle couplet will achieve a minimum length based on dominant‐discharge conditions. Values for the minimum‐length assumption are based on field data collected in New England and California, while the theoretical basis relies on the demonstrated hydraulic response of individual pools to elongation. Results from the simulations show that the location of pools can be primarily random in character, but still assume an average spacing between four and eight bankfull widths for a variety of conditions. Field verification data generally support the model but highlight a highly skewed distribution of pool‐forming elements and pool spacing. The relation between pool spacing and bankfull widths is attributed to the common geometric response of these features to dominant‐discharge conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Studies on pool morphologies include reports of over 80% or 90% of pools being associated with structural controls and large obstructions that include boulders, bedrock outcrops and large woody debris (LWD). A Monte Carlo simulation approach and developmental computer model was created to predict pool formation, spacing and the percentage length covered by pools, riffles, scour holes and runs based on input data that include channel slope, width, the number of small and large boulders, and the number of 10–30 cm, 30–60 cm and >60 cm pieces of wood. The statistical‐empirical model is founded on the idea that boulders, bedrock outcrops and large woody debris provide a physical framework that then controls local water‐surface slopes, velocity patterns and the locations of pools and riffles. The spacing values of individual types and sizes of obstructions are modeled as log‐normal distributions with separate distributions for each obstruction type. Pools are assigned different probabilities of development depending on the obstruction type. Pool and riffle lengths used to create the subsequent morphology follow their own slope‐dependent, log‐normal trends. A minimum distance develops between successive pools because of the backwater and turbulent conditions needed for pool formation. The total number and spacing of pools, riffles and scour holes thus reflects the number and locations of obstructions and characteristics of the pool–riffle couplet. The simulation model accurately captures the number of pools in the modeled data range at 65% of all the verification field sites, and 86% of the verification field sites with a more limited range of width and slope characteristics. Lower levels of prediction capabilities are associated with modeled numbers of scour holes and log jams. The model accurately mimics some statistical attributes of pool spacing, and future versions of the model could be developed to improve overall predictive capabilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Drought and summer drying can be important disturbance events in many small streams leading to intermittent or isolated habitats. We examined what habitats act as refuges for fishes during summer drying, hypothesizing that pools would act as refuge habitats. We predicted that during drying fish would show directional movement into pools from riffle habitats, survival rates would be greater in pools than in riffles, and fish abundance would increase in pool habitats. We examined movement, survival and abundance of three minnow species, bigeye shiner (Notropis boops), highland stoneroller (Campostoma spadiceum) and creek chub (Semotilus atromaculatus), during seasonal stream drying in an Ozark stream using a closed robust multi-strata mark-recapture sampling. Population parameters were estimated using plausible models within program MARK, where a priori models are ranked using Akaike’s Information Criterion. Creek chub showed directional movement into pools and increased survival and abundance in pools during drying. Highland stonerollers showed strong directional movement into pools and abundance increased in pools during drying, but survival rates were not significantly greater in pools than riffles. Bigeye shiners showed high movement rates during drying, but the movement was non-directional, and survival rates were greater in riffles than pools. Therefore, creek chub supported our hypothesis and pools appear to act as refuge habitats for this species, whereas highland stonerollers partly supported the hypothesis and bigeye shiners did not support the pool refuge hypothesis. Refuge habitats during drying are species dependent. An urgent need exists to further understand refuge habitats in streams given projected changes in climate and continued alteration of hydrological regimes.  相似文献   

9.
10.
11.
The purpose of the present study is to investigate experimentally the development of bedforms in a configuration where the sediment supply is limited. The experimental setup is a rectangular closed duct combining an innovative system to control the rate of sediment supply Qin , and a digitizing system to measure in real time the 3D bedform topography. We carried out different sets of experiments with two sediment sizes (100 µm and 500 µm) varying both the sediment supply and the water flow rate to obtain a total of 46 different configurations. After a transient phase, steady sub‐centimeter bedforms of various shapes have been observed: barchans dunes, straight transverse dune, linguoid transverse dunes and bedload sheets. Height, spacing, migration speed, and mean bed elevation of the equilibrium bedforms were measured. For a given flow rate, two regimes were identified with fine sediment: (i) a monotonic increasing regime where the equilibrium bedform height and velocity increase with the sediment supply rate Qin and (ii) an invariant regime for which both parameters are almost independent of Qin. For coarse sediment, only the first regime is observed. We interpret the saturation of height and velocity for fine sediment bedforms as the transition from a supply‐limited regime to a transport‐limited regime in which the bedload flux has reached its maximum value under the prevailing flow conditions. We also demonstrate that all experiments can be rescaled if the migration speed and height of the bedforms are, respectively, divided and multiplied by the cube of the shear velocity. This normalization is independent of grain size and of bedform morphology. These experimental results provide a new quantification of the factors controlling equilibrium height and migration speed of bedforms in supply‐limited conditions against which theoretical and numerical models can be tested.  相似文献   

12.
Quantitative measures of the relationships between channel morphology and the habitat use of Chinese sturgeon(Acipenser sinensis) can help management and regulatory agencies to quantify potential spawning habitats and develop recovery goals in view of the decreasing area of sturgeon spawning habitat.This study determined the specific bedform types at the pool-riffle scale and evaluated the slopes,aspects and bed load gradation composition of Chinese sturgeon spawning areas in the Yangtze River,China.A bedform differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool-riffle units that were independent of discharge.The vertical location of thalweg points within these units was quantified with a riffle proximity index.Chinese sturgeon spawning areas were mapped and correlated with the pool-riffle units,slopes and aspects.The results indicate that Chinese sturgeon spawning areas occur primarily in riffles.The majority of Chinese sturgeon spawning occurred at elevations greater than 75%of the difference in elevation between the nearest riffle crest and the pool bottom.The slope of spawning sites was distributed between 0.05 and 6.36,and the average aspects were 219.92 and 207.63,respectively.The bed load is mainly composted of gravel and pebble,sediment diameter concentrated on 50-500mm.These analyses of bedform morphology will assist regional fish managers in quantifying existing and potential Chinese sturgeon spawning habitats and will provide a quantitative framework for evaluating general ecological implications of channel morphology in the Yangtze River.  相似文献   

13.
Bedload transport data from planebed and step‐pool reach types are used to determine grain size transport thresholds for selected upland streams in southeast Australia. Morphological differences between the reach types allow the effects of frictional losses from bedforms, microtopography and bed packing to be incorporated into the dimensionless critical shear stress value. Local sediment transport data are also included in a regime model and applied to mountain streams, to investigate whether empirical data improve the delineation of reach types on the basis of dimensionless discharge per unit width (q*) and dimensionless bedload transport (qb*). Instrumented planebed and step‐pool sites are not competent to transport surface median grains (D50s) at bankfull discharge (Qbf). Application of a locally parametrized entrainment equation to the full range of reach types in the study area indicates that the majority of cascades, cascade‐pools, step‐pools and planebeds are also not competent at Qbf and require a 10 year recurrence interval flood to mobilize their D50s. Consequently, the hydraulic parameters of the regime diagram, which assume equilibrium conditions at bankfull, are ill suited to these streams and provide a poor basis of channel delineation. Modifying the diagram to better reflect the dominant transported bedload size (equivalent to the D16 of surface sediment) made only slight improvements to reach delineation and had greatest effect on the morphologies with smaller surface grain sizes such as forced pool‐riffles and planebeds. Likewise, the Corey shape factor was incorporated into the regime diagram as an objective method for adjusting a base dimensionless critical shear stress (τ*c50b) to account for lithologically controlled grain shape on bed packing and entrainment. However, it too provided only minor adjustments to reach type delineation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Shear stresses were evaluated at different sites on two rivers. The first (the Rulles) is characterized by a pebbly bedload and a meandering bed with riffles and pools. The second (the Rouge Eau) has mainly a sandy rippled bed where meandering is well developed but also flat gravelly sectors without meandering system. Shear stresses calculated from friction velocities (τ*) using a redefined y1 roughness height parameter were compared with total shear stresses calculated from the energy grade line and the hydraulic radius (τ), Divergence between these shear stresses seems to increase in the presence of bedforms and large-scale irregularities of the channel. The τ*/τ ratio is close to 0·5 in the gravelly sector of the Rouge Eau and reaches 0·65 in the riffles of the Rulles (generally located at the inflexion point of the meanders), while it is less than 0·3 in the pools of the same river (located in the loops) and only 0·2 in the sandy rippled sector of the Rouge Eau. Grain and bedform shear stresses were evaluated at these same sites by different methods. The grain shear stress (τ') represents on average 30 per cent of the total shear stress in the riffles of the Rulles and the gravelly sector of the Rouge Eau, but less than 15 per cent in the pools in the Rulles and the sandy sectors of the Rouge Eau. However, it emerges from experiments conducted with marked pebbles and in situ observations of erosion and transport of sandy and gravelly particles, that the grain shear stresses are underestimated and cannot explain the movements and modifications actually observed. Conversely, shear stresses calculated from friction velocities at the sites where erosion actually occurred (or failed to occur despite very high velocities) provide a better explanation of the observed movements.  相似文献   

15.
The ‘velocity-reversal hypothesis’ is the linchpin for a number of recent conceptual models pertaining to sediment sorting and the maintenance of pool-riffle sequences in gravel-bedded streams. The literature in support of the hypothesis together with published adverse criticism is reviewed. It is concluded that convincing evidence for the ubiquitous occurrence of such a reversal in a range of channel geometries is currently unavailable. Continuity considerations indicate that riffles need to be considerably wider than pools for a reversal in the mean velocity to occur under conditions of subcritical flow, high stage, and stable morphology. These observations are substantiated by a detailed study of the hydraulic geometry of stable pool-riffle sequences in the River Severn, England. Neither the sectionally-averaged velocity nor the near-bed shear velocity is sensibly greater in the pools than over the riffles during bankfull or near bankfull flow. Instead a tendency towards equalization of the values of average hydraulic variables is noted as discharge increases. A detailed investigation of the three-dimensional character of the flow is required to demonstrate whether the entrainment forces within pools can locally exceed those over neighbouring riffles. Unusual behaviour of the energy gradient over riffles during moderate discharges is related to backwater effects as mediated by the spacing of the riffles. The hydraulic data are used to comment on the stability of the test reaches in the context of the development of the River Severn in the vicinity of Shrewsbury.  相似文献   

16.
This paper summarizes measurements of velocity along three reaches of a small mountain channel with step–pool bedforms. A one‐dimensional electromagnetic current meter was used to record velocity fluctuations at 37 fixed measurement points during five measurement intervals spanning the peak of the annual snowmelt hydrograph. Measurement cross‐sections were located upstream from a bed‐step, at the step lip, downstream from the step, and in a uniform‐gradient run. Data analyses focused on characteristics of velocity profiles, and on correlations between velocity characteristics and the potential control variables bedform type, reach gradient and flow depth. To test the hypothesis that velocity characteristics are related to channel bedform types, ANOVA and ANCOVA tests were performed for the average velocity and coefficient of variation of point velocity data. Results indicate that high frequency velocity variations correlate to some degree with both channel characteristics and discharge. Velocity became more variable as stage increased, particularly at low‐gradient reaches with less variable bed roughness. Velocity profiles suggest that locations immediately downstream from bed‐steps are dominated by wake turbulence from mid‐profile shear layers. Locations immediately upstream from steps, at step lips, and in runs are dominated by bed‐generated turbulence. Adverse pressure gradients upstream and downstream from steps may be enhancing turbulence generation, whereas favourable pressure gradients at steps are suppressing turbulence. The bed‐generated turbulence and skin friction of runs appear to be less effective energy dissipators than the wake‐generated turbulence and form drag of step–pool bedforms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This study, using an experimental approach, focuses on the effect of downward seepage on a threshold alluvial channel morphology and corresponding turbulent flow characteristics. In all the experiments, we observed that the streamwise time‐averaged velocities and Reynolds shear stresses were increased under the influence of downward seepage. Scales of eddy length and eddy turnover time were significantly increased with the application of downward seepage, leading to sediment transport and initiation of bedforms along the channel length. As the amount of seepage discharge increased, eddy length and turnover time were further increased, causing the development of larger bedforms. It was revealed that the geometry of bedforms was linked with the size of eddies. In this work, statistics of bedform dynamics are presented in terms of multi‐scalar bedforms in the presence of seepage. These multi‐scalar ubiquitous bedforms cast a potential impact on flow turbulence as well as stream bed morphology in channels. We used wavelet to analyse temporally lagged spatial bed elevation profiles that were obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuations at different length scales. A spatial cross‐correlation analysis, based on the wavelet coefficients, was performed on these bed elevation datasets to observe the effect of downward seepage on the dynamic behaviour of bedforms at different length scales. It was found that celerity of bedforms reduced with increase in seepage percentage. Bedform celerity was best approximated by a probability density function such as Rayleigh distribution under varying downward seepage. Further, statistical analysis of physical parameters of bedforms ascertained that the reduction in bedform celerity was a result of increased bedform size. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In a small experimental catchment of the Dolomites (Rio Cordon, 5 km2) field observations have been carried out on the movement of various sized bed material particles. Displacement length of 860 marked pebbles, cobbles and boulders (0·032 < D < 0·512 m) has been measured along the river bed during individual snowmelt and flood events in the periods 1993–1994 and 1996–1998. Floods were grouped into two categories. The first includes ‘ordinary’ events, which are characterized by peak discharges with a return period of 1–5 years and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return period of 50–60 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. The variation according to grain size of total displacement length Li depends on the degree of mobilization of the individual fractions of the bed surface: Li is independent of Di for smaller, fully mobile grain sizes and decreases rapidly with Di for larger fractions in a state of partial transport. Sustained selective transport without a supply of sediment from upstream leads to the development of a stable coarse armoured surface through progressive winnowing of finer material from the bed surface. With supply unlimited conditions for transport, both the occurrence of extreme events and the duration of a sequences of ‘ordinary’ floods play an important role in the degree of mobilization of the individual fractions of the bed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Past research investigated the surpassing of mean velocity at riffle cross sections by that at pool cross sections for flows up to bankfull, termed ‘velocity reversals’, to understand one mechanism by which riffle–pool relief is maintained. This study reenvisioned the classic velocity reversal by documenting stage‐dependent changes to the locations of peak velocity without cross sections. Instead, the dynamics of peak velocity patches were considered for flows spanning 0.2 to 22 times bankfull discharge through the use of a high‐resolution DEM and two‐dimensional hydrodynamic modelling. A remarkable diversity in peak velocity patch behaviour was found across discharges, including gradual expansion and shifting as well as abrupt disappearance and emergence relative to the low‐flow patch locations. These behaviours blended together to varying degrees to produce many reversals in peak velocity across morphological units, but it took substantially higher than bankfull discharge for peak velocities to move from riffles and chutes to fast glides and pools. The discharges at which reversals occurred among morphological units were significantly higher for the valley‐confined reach than for the anastomosing reach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号