首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

2.
A quasi-2D unsteady flow and sediment transport model suitable for the simulation of large lowland river systems,including their floodplains,is presented.The water flow and sediment equations are discretised using an interconnected irregular cells scheme,in which different simplifications of the 1D de Saint Venant equations are used to define the discharge laws between cells.Spatially-distributed transport and deposition of fine sediments throughout the river-floodplain system are simulated.The model is applied over a 208-km reach of the Parana River between the cities of Diamante and Ramallo(Argentina) comprising a river-floodplain area of 8100 km~2.After calibration and validation,the model is applied to predict water and sediment dynamics during synthetically generated extraordinary floods of100,1000,and 10,000 years return period.The potential impact of a 56-km long road embankment constructed across the entire floodplain is simulated and compared to model results without the embankment.The embankment results in increases in upstream water levels,inundation extent,flow duration,and sediment deposition.  相似文献   

3.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
It is often believed that extreme but infrequent events are most important in the development of landforms. When evaluating the overall effect of large floods on floodplain sedimentation, quantitative measurements of both high- and low-magnitude events should be considered. To analyse the role of flood magnitude on floodplain sedimentation, we measured overbank sedimentation during floods of different magnitude and duration. The measurements were carried out on two embanked floodplain sections along the rivers Rhine and Meuse in The Netherlands, using sediment traps made of artificial grass. The results showed an increase in total sediment accumulation with flood magnitude, mainly caused by enhanced accumulation of sand. At low floodplain sections the increase in sediment deposition was smaller than expected from the strong increase in suspended sediment transport in the river. Spatial variability in sediment accumulation was found to depend both on flood magnitude and duration. Deposition of sand on natural levees mainly takes place during high-magnitude floods, whilst low floods and slowly receding floods are important for the deposition of silt and clay in low-lying areas, at greater distance from the main channel. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
A large amount of the total sediment load in the Chinese Yellow River is transported during hyperconcentrated floods. These floods are characterized by very high suspended sediment concentrations and rapid morphological changes with alternating sedimentation and erosion in the main channel, and persistent sedimentation on the floodplain. However, the physical mechanisms driving these hyperconcentrated floods are still poorly understood. Numerical modelling experiments of these floods reveal that sedimentation is largely caused by large vertical concentration gradients, both in the channel during the rising stage of the flood, as well as on the floodplains, during a later stage of the flood. These vertical concentration gradients are large because the turbulent mixing rates are reduced by the increased sediment‐induced density gradients, resulting in a positive feedback mechanism that produces high deposition rates. Erosion prevails when the sediment is largely held in suspension due to hindered settling, and is strengthened by the reduced wetted cross‐section caused by massive sedimentation on the floodplain. Observed patterns of erosion and sedimentation during these floods can be qualitatively reproduced with a numerical model in which sediment‐induced density effects and hindered settling are included. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper outlines a numerical model for the prediction of floodplain inundation sequences, overbank deposition rates and deposit grain size distributions. The model has two main components: first, a simplified hydraulic scheme which predicts floodwater flow depths and velocities, and second, a sediment transport element which employs a mass balance relation describing suspended sediment dispersion by convective and diffusive processes and sediment deposition as a function of particle settling rates. These relationships are solved numerically on a finite difference grid that accurately replicates the complex topographic features typical of natural river floodplains. The model is applied to a 600 m reach of the River Culm, Devon, U.K. using data derived from a range of field and laboratory techniques. Continuous records of river stage and suspended sediment concentration provide the model's upstream boundary input requirements. These are supplemented by measurements of the in situ settling characteristics of the suspended sediment load. The model's sediment transport component is calibrated with the aid of a dataset of measured overbank deposition amounts derived from flood events over a 16 month period. The model is shown to predict complicated floodwater inundation sequences and patterns of suspended sediment dispersion and deposition, which are largely a product of the complex topography of the floodplain. These results compare favourably with observations of overbank processes and are an improvement over those of previous models which have employed relatively simple representations of floodplain geometry. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
1 INTRODUCTION The transport of sediment in rivers with active floodplains is a two-dimensional process because the main channel and the floodplain can have very different transport capacities. Therefore, two-dimensional (2D) models are often used to simulate the streamwise and transverse variations of sediment erosion and deposition. Many 2D numerical models have been presented to simulate sediment transport in floodplains (James, 1985; Pizzuto, 1987; Howard, 1992; Nicholas and Walli…  相似文献   

10.
Using aerial photographs and field measurements, sandy overbank deposits formed by the large-magnitude floods of 1993/94 and 1995 were quantified along two branches of the Dutch Rhine river system: the Waal (1993/94 and 1995) and the IJssel (1995). These deposits were laid down intermittently all along the length of these rivers on the top and landward slope of the natural levees, and covered about 4 per cent of the embanked floodplain on the Waal and about 1 per cent on the IJssel. The overbanks and transport mechanism is basically convective by nature. The spatial variability of overbank sedimentation points to the important role played by helicoidal currents in determining overbank deposition. The presence of embankments and training works appears to influence the sand transport to and morphological development of the floodplains along the Dutch Rhine river system. Overbank deposition volumes about equal present estimates of sand transport during a large-magnitude flood. It appears that studies on sand transport in the Dutch Rhine carried out so far underestimate sand transport during floods. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Riparian floodplains are known to retain nutrients such as nitrogen and phosphorus. The main processes are denitrification (for nitrogen) and sedimentation (for phosphorus), which depend on the nutrient load and the flow velocity or residence time, respectively. Both are related to floodplain size and the current discharge conditions. However, it is not yet known, to which extent, how long and how often during a year riparian floodplains are inundated at the catchment scale. Small floods are not relevant for flood risk management, but they are important for the nutrient cycle. This study examined the flooding frequency, the extent and nutrient retention capacity of inundated riparian floodplains between Wittenberg and Wittenberge along the river Elbe in Germany, based on freely available data. The calculation of inundated areas was produced by the Software FLYS 2.1.3. On the basis of these results, we developed an empirical approach to predict the average yearly active floodplain as a share of the inundated floodplain on the potential floodplain depending on hydro-morphology. This hydrology dependent approach was applied to calculate the active floodplain as an average inundated floodplain area and coupled with a proxy-based nutrient retention calculation. Due to morphologic characteristics, riparian floodplains upstream and downstream from Magdeburg show significant differences in flooding frequencies, average inundated floodplain extent and floodplain widths. Assuming this average inundated floodplain as relevant for nutrient retention, we calculated an eight-fold higher retention for the downstream river section, despite a smaller potential floodplain, indicating how important regularly flooded areas are. The presented Q/MQ approach offers new options for modeling nutrient retention in floodplains even on a monthly basis and for other river systems. However, there is a strong need to consider the inflowing nutrient load for retention calculation instead of proxy values.  相似文献   

12.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the development and application of a distributed rainfall-runoff model for extreme flood estimation, and its use to investigate potential changes in runoff processes, including changes to the ‘rating curve’ due to effects of over-bank flows, during the transition from ‘normal’ floods to ‘extreme’ floods. The model has two components: a hillslope runoff generation model based on a configuration of soil moisture stores in parallel and series, and a distributed flood routing model based on non-linear storage-discharge relationships for individual river reaches that includes the effects of floodplain geometries and roughnesses. The hillslope water balance model contains a number of parameters, which are measured or derived a priori from climate, soil and vegetation data or streamflow recession analyses. For reliable estimation of extreme discharges that may extend beyond recorded data, the parameters of the flood routing model are estimated from hydraulic properties, topographic data and vegetation cover of compound channels (main channel and floodplains). This includes the effects of the interactions between the main channel and floodplain sections, which tend to cause a change to the rating curve. The model is applied to the Collie River Basin, 2545 km2, in Western Australia and used to estimate the probable maximum flood (PMF) from probable maximum precipitation estimates for this region. When moving from normal floods to the PMFs, application of the model demonstrates that the runoff generation process changes with a substantial increase of saturation excess overland flow through the expansion of saturated areas, and the dominant runoff process in the stream channel changes from in-bank to over-bank flows. The effects of floodplain inundation and floodplain vegetation can significantly reduce the magnitude of the estimated PMFs. This study has highlighted the need for the estimation of a number of critical parameters (e.g. cross-sectional geometry, floodplain vegetation, soil depths) through concerted field measurements or surveys, and targeted laboratory experiments.  相似文献   

14.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Dieback of native Eucalyptus largiflorens forests is an increasing problem on the floodplains of the lower River Murray, southern Australia. Salinisation of floodplain soils, as a result of the changed hydrological management of the River Murray, appears to be a primary cause of the dieback. Regulation of the River Murray has reduced the frequency of large flood events by a factor of approximately three and caused groundwater levels beneath floodplains to rise. The higher water tables have resulted in increased discharge of the naturally saline groundwater in the floodplains by evapotranspiration, and the decreased incidence of large floods has reduced floodwater recharge and hence leaching of salt from floodplain soils. Use of soil physical properties for a range of floodplain soils, combined with measurements of groundwater discharge from bare and vegetated sites, suggests that the time-scale for complete soil salinisation can, at worst, be less than 20 years. Moreover, salt accumulation at most sites will continue to occur as the present flooding regime (of which there is limited scope for improvement) appears incapable of providing the leaching required to counteract accumulation. The analyses carried out here suggest that the ‘critical’ water table depth (below which groundwater discharge is balanced or exceeded by floodwater recharge) needs to be increased by 14–55% (the more clayey the soil, the larger the increase) to prevent salt accumulation. Failure to implement schemes which lower the water tables beneath the floodplain may, in the long term, cause serious damage to these important riparian forests.  相似文献   

16.
The potential for using fallout (unsupported) Pb-210 (210Pb) measurements to estimate rates of overbank sediment deposition on the floodplains of lowland rivers is explored. A model which distinguishes the contribution from direct atmospheric fallout and the catchment-derived input associated with the deposition of suspended sediment has been developed to interpret the fallout Pb-210 inventories at floodplain sampling sites and to estimate average sediment accumulation rates over the past 100 years. The approach has been successfully used to estimate rates of overbank sedimentation on the floodplains of the Rivers Culm and Exe in Devon, U.K. A detailed investigation of the pattern of longer-term sedimentation rates within a small reach of the floodplain of the River Culm indicated a range of deposition rates between 0.07 and 0.59 g cm−2 a−1, which was in close agreement with estimates of current sedimentation rates obtained using sedimentation traps.  相似文献   

17.
This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically‐complex natural river floodplains. A two‐dimensional hydraulic model that solves the depth‐averaged shallow water form of the Navier–Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two‐phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (α) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The rate of vertical accretion (typically 14–18 mm h−1) during eight floods in the Waipaoa River basin, with recurrence intervals of 5 to 60 years, was determined by relating the floodplain stratigraphy at McPhail's bend to the 1948–1995 flood history. Overbank deposits remaining after a flood that occurred in March 1996 suggest a rate of vertical accretion of 15 mm h−1. By contrast, because the flow velocity across the floodplain was too high to permit deposition from suspension, during the record flood of March 1988 the rate of vertical accretion was only 6 mm h−1. The sequence of deposition is highly discontinuous, and the rapid vertical accretion is a response to a late 19th to early 20th century phase of deforestation in the headwaters that probably initiated a far greater change in suspended sediment yield than in discharge. Cross-section surveys conducted since 1948 indicate that the high suspended sediment load of the Waipaoa River also promoted in-channel deposition, which effected a progressive reduction in bankfull channel width although, due to the overbank deposition, channel capacity remained constant. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号