首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

2.
A depth-averaged 2-D numerical model for unsteady flow, salinity and cohesive sediment transport in estuaries is established using the finite volume method on the non-staggered, curvilinear grid. The convection terms are discretized by upwind schemes, the diffusion terms are by the central difference scheme, and the time derivative terms are by the three-time-level implicit scheme. The coupling of flow velocity and water level in the 2-D shallow water equations is achieved by the SIMPLEC algorithm with the Rhie and Chow‘s momentum interpolation method. The sediment model calculates the settling, deposition, erosion and transport of cohesive sediment, taking into account the influence of sediment size, sediment concentration, salinity and turbulence intensity on the flocculation of cohesive sediment. The flow model is first tested against the measurement data in the Tokyo Bay and San Francisco Bay, showing good agreements. And then, the entire model of flow, salinity and sediment transport is verified in the Gironde Estuary. The water elevation, flow velocity, salinity and sediment concentration are well predicted.  相似文献   

3.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

4.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

5.
The paper presents the 3D finite element simulation of tidal flow and sediment transport in the estuarine region of the Haihe river. The proposed model adopts sigma-transformation of the hydrodynamic and sediment transport equations. The hydrodynamic and sediment transport models are verified in case of a simple test problem for which analytical solutions are available. Finally the models are applied to muddy Haihe river estuary of North China and it is claimed that hydrodynamic and sediment…  相似文献   

6.
A two-dimensional mathematical model for simulating flow and sediment transport is presented. The model simulates flow and geo-morphological processes using a high order accurate, oscillation free scheme. The depth averaged Reynolds (shallow water) equations are used for flow simulation. Both equilibrium and non-equilibrium methods (by solving convection-diffusion equation) are used for sediment transport modeling while sediment carrying capacity is computed using different methods. A finite volume, flux difference splitting scheme is employed to solve the governing equations, which is able to simulate sub, super and transeritical flows with shock waves. Moreover, the numerical method is able to simulate flow over the variable topographies and it has a low level of numerical diffusion in the case of circulating flows like headlands. The computational grid of this model is triangular unstructured with variable size, which is flexible for arbitrary geometries and grid refinement. Using the model for simulating flow and sediment transport in some test cases such as a partially closed channel and comparing the results showed that the results obtained by the developed model were in a reasonable agreement with measurements and the other models cited.  相似文献   

7.
Field data from the Lower Yellow River (LYR) covering a period often consecutive years are used to test a mathematical model for one dimensional sediment transport by unsteady flow developed previously by the writers. Data of the first year of the said period, i.e., 1976, are used to calibrate the model and those of the remaining years to verify it. Items investigated include discharge, water stage, rate of transport of suspended sediment and riverbed erosion/deposition. Comparisons between computed and observed data indicate that the proposed model may well simulate sediment transport in the LYR under conditions of unsteady flow with sufficient accuracy.  相似文献   

8.
The helical flow significantly affects the flow, sediment transport and morphological evolution in curved channels. A semi-empirical formula is proposed to determine the cross-stream distribution of the helical flow intensity in the developed regions of a channel bend. It is then used to evaluate the dispersion terms in the depth-averaged 2-D momentum equations and suspended-load transport equation as well as the bed-load transport angle, thus enhancing the depth-averaged 2-D model to account for the effect of helical flow. The tests in several experimental and field cases show that the enhanced depth-averaged 2-D model can much more reasonably predict the shifting of main flow from inner bank to outer bank, the erosion along outer bank and deposition along inner bank than the depth-averaged 2-D model without considering this effect.  相似文献   

9.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

10.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

11.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

12.
Numerical simulation of flows in shallow reservoirs has to be checked for its consistency in predicting real flow conditions and sedimentation patterns. Typical flow patterns may exhibit flow separation at the inlet, accompanied by several recirculation and stagnation areas all over the reservoir surface. The aim of the present research project is to study the influence of the geometry of a reservoir on sediment transport and deposition numerically and experimentally, focusing on a prototype reservoir depth between 5 and 15 m as well as suspended sediment transport.
A series of numerical simulations is presented and compared with scaled laboratory experiments, with the objective of testing the sensitivity to different flow and sediment parameters and different turbulence closure schemes. Different scenarios are analyzed and a detailed comparison of preliminary laboratory tests and some selected simulations are presented.
The laboratory experiments show that suspended sediment transport and deposition are determined by the initial flow pattern and by the upstream and downstream boundary conditions. In the experiments, deposition in the rectangular basin systematically developed along the left bank, although inflow and outflow were positioned symmetrically along the centre of the basin. Three major horizontal eddies developed influencing the sediment deposition pattern. Although asymmetric flow patterns are privileged, a symmetric pattern can appear from time to time. This particular behaviour could also be reproduced by a two-dimensional depth-averaged flow and sediment transport model (CCHE2D). The paper presents numerical simulations using different turbulence closure schemes (k-ε and eddy viscosity models). In spite of the symmetric setup, these generally produced an asymmetric flow pattern that can easily switch sides depending on the assumptions made for the initial and boundary conditions. When using the laboratory experiment as a reference, the most reliable numerical results have been obtai  相似文献   

13.
The development and application of the physically-based and spatially-distributed mathematical model CTSS8-SED is presented. The model simulates hydrologic-hydraulic processes produced by storm events and related soil erosion and sediment transport processes at basin scale in lowland areas. The model simulates (i) storm runoff,(ii) soil detachment by raindrop impact and overland flow (gross sediment yield),(iii) sediment transport by overland flow and associated erosion-deposition processes and (iv) sediment transport by stream flow and riverbed erosion-deposition processes. A quasi two-dimensional representation of water flow and sediment transport routing is made by means of interconnected cells approach. The model is applied to simulate two flooding events in the Luduea Creek basin (Santa Fe, Argentina) occurred in April 1994 and March 2007 due to extraordinary rainfalls.  相似文献   

14.
A two-phase model for fast geomorphic shallow flows   总被引:1,自引:0,他引:1  
The paper introduces a 2D shallow water model based on a two-phase formulation for the analysis of fast geomorphic transients occurring in the context of river morphodynamics.Mass and momentum conservation principles are separately imposed for both phases.The model naturally accounts for non-equilibrium solid transport,since neither instantaneous adaptation hypothesis nor any lag equation is employed to represent sediment dynamics.The hyperbolic character of the proposed model is shown to be preserved independently on the flow conditions.Results from numerical simulations of both 1D and 2D test-cases are compared with literature experimental data and with available numerical solutions.  相似文献   

15.
The equilibrium relations for water and sediment transport refer to the relative balance of sediment transport and the relative stability of river courses formed by the automatic adjustment of riverbeds.This is the theoretical basis for the comprehensive management of sediment in the Yellow River.Based on the theories of sediment carrying capacity and the delayed response of riverbed evolution,in this study,the equilibrium relations for water and sediment transport in the Yellow River are established.These relations include the equilibrium relationships between water and sediment transport and bankfull discharge in the upper and lower Yellow River and between water and sediment transport and the Tongguan elevation in the middle Yellow River.The results reveal that for the Ningmeng reach,the Tongguan reach,and the lower Yellow River,erosion and deposition in the riverbeds are adjusted automatically,and water and sediment transport can form highly constrained equilibrium relationships.These newly established equilibrium relationships can be applied to calculate the optimal spatial allocation scheme for sediment in the Yellow River.  相似文献   

16.
A traditional way to estimate the amount of sediment deposition in a reservoir is simply based on the variation in the elevation measurements made at different times.In the present study,a physiographic soil erosion-deposition(PSED) model is applied to.Tseng-Wen reservoir watershed to compute the discharge and sediment concentration into the reservoir,and the deposition volume.The PSED model is verified using three storm events and then compared to the historic data recorded at the hydrological stations in the reservoir watershed,which shows close agreement between the simulated and recorded values of the flow discharge into the reservoir and the corresponding sediment yield. The numerical simulation was also conducted for all rainfall events from 1996 to 2001 to estimate the annual sediment deposition volume in the reservoir.Similarly,the simulated result was compared to that obtained from the cross-section elevation measurement.It is found that some measured data points had large uncertainty or were questionable.On the contrary,the model results and the measured data that renders the model credible.Therefore,regardless of the estimation for the flow discharge into the reservoir induced by a single rainfall event,the sediment yield,or the sediment deposition,the PSED model has successfully demonstrated its ability.  相似文献   

17.
The current study focuses on the application of a three-dimensional numerical model for the prediction of morphological bed changes. The sediment deposition in a reservoir during a 10-year-flood was investigated and the results of the simulation were validated with data derived from a physical model study. Because of the small grain sizes in the prototype, synthetic granulate was used in the physical model. The numerical computation domain was a reproduction of the physical model, including the grain sizes and the density of the particles, in order to ensure comparability. The CFD code SSIIM, which solves the RANS-equations in three-dimensions, was used for the simulations. The sediment transport in SSIIM is divided into suspended sediment transport, computed by solving the convection-diffusion equation, and bed-load transport, calculated by an empirical formula. The results of the numerical simulation correspond well to the results of the physical model study. The simulated location and the pattern of the sediment deposition in the reservoir are an accurate representation of the observed distribution in the physical model.  相似文献   

18.
Yangshan near-shore sea area is the multi-island and multi-channel area with strong flow velocity and high suspended sediment concentration. Based on the characteristics of tidal currents, waves, and sediment in the Yangshan area, a two-dimensional numerical model of tidal currents, sediment transport, and sea bed deformation is developed. In the model, the effects of tidal currents and wind waves on sediment transport are considered. According to characteristics of the study area, unstructured grids are applied to fit the boundaries of the near-shore sea area. The results show that the calculated values are in good agreement with the measured data. The field of tidal currents, suspended sediment concentrations, and the deformation of the seabed can be successfully simulated.  相似文献   

19.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

20.
Ship-generated waves and return currents are capable of re-suspending significant quantities of bottom and bank sediments.However,most of the previous studies done on the subject do not show how and where sediment is re-suspended by the wakes and the directions of net transport.In this paper,a 3D numerical model based on hydro-sedimentary coupling is presented to search the relationship between the sediment movement,and the pattern of ship-generated waves around and far away from the vessel and the return currents around the ships.The hydrodynamic model is based on 3D Navier-Stokes equations including the standard k-ε model for turbulence processes,and the sediment transport model is based on a 3D equation for the re-suspended sediment transport.The computation results show that the areas of sediment concentration and transport(whether by resuspension or by the bedload) depend mainly on the position,the speed of the ship in the waterways,the kinematics of ship-generated waves and on the return flows.Thus,a map of sediment distribution and the modes of sediment transport generated by the passage of the ship are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号