首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTION A headcut, which is an abrupt break in the slope of a channel bed, is often called a “knickpoint” or “scarp” in the study of rivers and waterways. A headcut tends to retreat upstream as water flows over it. As a headcut passes a cross s…  相似文献   

2.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

3.
In this study an incompressible smoothed particle hydrodynamics (ISPH) approach coupled with the sediment erosion model is developed to investigate the sediment bed scour and grain movement under the dam break flows. Two-phase formulations are used in the ISPH numerical algorithms to examine the free surface and bed evolution profiles, in which the entrained sediments are treated as a different fluid component as compared with the water. The sediment bed erosion model is based on the concept of pick-up flow velocity and the sediment is initiated when the local flow velocity exceeds a critical value. The proposed model is used to reproduce the sediment erosion and follow-on entrainment process under an instantaneous dam break flow and the results are compared with those from the weakly compressible moving particle semi-implicit (WCMPS) method as well as the experimental data. It has been demonstrated that the two-phase ISPH model performed well with the experimental data. The study shows that the ISPH modelling approach can accurately predict the dynamic sediment scouring process without the need to use empirical sediment transport formulas.  相似文献   

4.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A three-dimensional k-ε-Ap two-fluid turbulence model is proposed to study liquid-particle two-phase flow and bed deformation.By solving coupled liquid-phase and solid-phase governing equations in a finite-volume method,the model can calculate the movement of both water and sediment.The model was validated by water-sediment transport in a 180° channel bend with a movable bed.The validation concerns two-phase time-averaged velocities,bed deformation,water depth,depth-averaged streamwise velocity,cross-stream bed profiles,and two-phase secondary flow velocity vectors.The agreement between numerical results and experimental results was generally good.The comparisons of the numerical results of different models show that the three-dimensional k-ε-Ap two-fluid turbulence model has a relatively higher accuracy than one-fluid model.  相似文献   

6.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

7.
Numerical modeling of free-surface flow over a mobile bed with predominantly bedload sediment transport can be done by solving the shallow water and Exner equations using coupled and splitting approaches.The coupled method uses a coupling of the governing equations at the same time step leading to a non-conservative solution.The splitting method solves the Exner and the shallow water equations in a separate manner,and is only capable of modeling weak free-surface and bedload interactions.In the current study,an extended version of a Godunov-type wave propagation algorithm is presented for modeling of morphodynamic systems using both coupled and splitting approaches.In the introduced coupled method the entire morphodynamic system is solved in the form of a conservation law.For the splitting technique,a new wave Riemann decomposition is defined which enables the scheme to be utilized for mild and strong interactions.To consider the bedload sediment discharge within the Exner equation,the Smart and Meyer-Peter&Müller formulae are used.It was found that the coupled solution gives accurate predictions for all investigated flow regimes including propagation over a dry-state using a Courant-Friedrichs-Lewy(CFL)number equal to 0.6.Furthermore,the splitting method was able to model all flow regimes with a lower CFL number of 0.3.  相似文献   

8.
Fully coupled mathematical modeling of turbidity currents over erodible bed   总被引:1,自引:0,他引:1  
Turbidity currents may feature active sediment transport and rapid bed deformation, such as those responsible for the erosion of many submarine canyons. Yet previous mathematical models are built upon simplified governing equations and involve steady flow and weak sediment transport assumptions, which are not in complete accordance with rigorous conservation laws. It so far remains unknown if these could have considerable impacts on the evolution of turbidity currents. Here a fully coupled modeling study is presented to gain new insights into the evolution of turbidity currents. The recent analysis of the multiple time scales of subaerial sediment-laden flows over erodible bed [Cao Z, Li Y, Yue Z. Multiple time scales of alluvial rivers carrying suspended sediment and their implications for mathematical modeling. Adv Water Resour 2007;30(4):715–29] is extended to subaqueous turbidity currents to complement the fully coupled modeling. Results from numerical simulations show the ability of the present coupled model to reproduce self-accelerating turbidity currents. Comparison among the fully and partially coupled and decoupled models along with the analysis of the relative time scale of bed deformation explicitly demonstrate that fully coupled modeling is essential for refined resolution of those turbidity currents featuring active sediment transport and rapid bed deformation, and existing models based on simplified conservation laws need to be reformulated.  相似文献   

9.
A three-dimensional k-ε-Ap two-fluid turbulence model is proposed to study liquid-particle two-phase flow and bed deformation. By solving coupled liquid-phase and solid-phase governing equations in a finite-volume method, the model can calculate the movement of both water and sediment. The model was validated by water-sediment transport in a 180° channel bend with a movable bed. The validation concerns two-phase time-averaged velocities, bed deformation, water depth, depth-averaged streamwise velocity, cross-stream bed profiles, and two-phase secondary flow velocity vectors. The agreement between numerical results and experimental results was generally good. The comparisons of the numerical results of different models show that the three-dimensional k-ε-Ap two-fluid turbulence model has a relatively higher accuracy than one-fluid model.  相似文献   

10.
In the middle and lower reaches of alluvial rivers, various kinds of river regulation projects affecting natural channel evolution often are distributed due to the requirements of flood control, navigation,and channel stability. However, the influence of large-scale river regulation works on fluvial processes is not fully known. Therefore, a two-dimensional(2D) morphodynamic model has been improved to address this problem. The new detailed procedure is presented in this paper:(i) First, each nod...  相似文献   

11.
It is increasingly recognized that effective river management requires a catchment scale approach. Sediment transport processes are relevant to a number of river functions but quantifying sediment fluxes at network scales is hampered by the difficulty of measuring the variables required for most sediment transport equations (e.g. shear stress, velocity, and flow depth). We develop new bedload and total load sediment transport equations based on specific stream power. These equations use data that are relatively easy to collect or estimate throughout stream networks using remote sensing and other available data: slope, discharge, channel width, and grain size. The new equations are parsimonious yet have similar accuracy to other, more established, alternatives. We further confirm previous findings that the dimensionless critical specific stream power for incipient particle motion is generally consistent across datasets, and that the uncertainty in this parameter has only a minor impact on calculated sediment transport rates. Finally, we test the new bedload transport equation by applying it in a simple channel incision model. Our model results are in close agreement to flume observations and can predict incision rates more accurately than a more complicated morphodynamic model. These new sediment transport equations are well suited for use at stream network scales, allowing quantification of this important process for river management applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A new analytical method was evaluated for predicting scour profile downstream of a submerged sluice gate with an apron. The differential equations between bed Shear stress and Scour profile Curvature(SSC model) were utilized to predict the scour profile in both temporal and equilibrium stages. A jet momentum flux was considered as an external source of erosion on a hypothetical particle ring as the boundary between the flow and sediment bed. The scour length and sediment resistance factor were t...  相似文献   

13.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

14.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

15.
16.
小浪底水库于1999年运用以后,该河道经历了长时间持续冲刷过程.为掌握小浪底水库运用后黄河尾闾段洪水演进特点及河床冲淤规律,采用一维水沙数学模型研究是一条重要的途径.本研究首先采用浑水控制方程,建立了一维耦合水沙数学模型,并利用2003年利津-西河口段汛期实测水沙及汛前断面地形资料对该模型进行率定,计算的流量、水位及含沙量等过程与实测值吻合较好;然后采用2015年利津—汊3段汛期实测资料对该模型进行验证,结果显示水位与冲淤量计算值与实测值较为符合;最后基于2015年实测洪水过程,计算了若干组不同断面间距下的洪水演进及冲淤过程,分析了不同断面间距对沿程水位及河段冲淤量等计算结果的影响,结果表明:采用不同断面间距对水位计算结果影响较小,而对冲淤量计算结果会产生一定影响;在河段水沙及冲淤特性复杂的情况下,采用一维数学水沙模型计算时应考虑断面间距的选择.  相似文献   

17.

In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  相似文献   

18.
Morphodynamic models are used by river practitioners and scientists to simulate geomorphic change in natural and artificial river channels. It has long been recognized that these models are sensitive to the choice of parameter values, and proper calibration is now common practice. This paper investigates the less recognized impact of the choice of the model itself. All morphodynamic models purport to simulate the same flow and sediment dynamics, often relying on the same governing equations. Yet in solving these equations, the models have different underlying assumptions, for example regarding spatial discretization, turbulence, sediment inflow, lateral friction, and bed load transport. These differences are not always considered by the average model user, who might expect similar predictions from calibrated models. Here, a series of numerical simulations in meandering channels was undertaken to test whether six morphodynamic codes (BASEMENT, CCHE‐2D, NAYS, SSIIM‐1, TELEMAC‐2D and TELEMAC‐3D) would yield significantly different equilibrium bathymetries if subjected to identical, initial flow conditions. We found that, despite producing moderately similar velocity patterns on a fixed‐flat bed (regression coefficient r of 0.77 ± 0.20), the codes disagree substantially with respect to simulated bathymetries (r = 0.49 ± 0.31). We relate these discrepancies to differences in the codes' assumptions. Results were configuration specific, i.e. codes that perform well for a given channel configuration do not necessarily perform well with higher or lower sinuosity configurations. Finally, limited correlation is found between accuracy and code complexity; the inclusion of algorithms that explicitly account for the effects of local bed slope and channel curvature effects on transport magnitude and direction does not guarantee accuracy. The range of solutions obtained from the evaluated codes emphasizes the need for carefully considering the choice of code. We recommend the creation of a central repository providing universal validation cases and documentation of recognized fluvial codes in commonly studied fluvial settings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A conceptual modeling framework for developing process-based mathematical models of sediment generation, transport, and deposition on broad shallow flow areas is presented. The governing equations relevant to process-based modeling of broad shallow flow sediment processes on small watersheds are presented and the effects of space and time averaging on the predictive equations are described. Starting from the most general one-dimensional, unsteady model of sediment processes, simpler model structures are obtained and the successive simplifications made on the governing equations in order to obtain simpler and less detailed formulations are described. Specific model formulations are given for illustrative purposes and applications of these models to erosion and sediment yield prediction from broad shallow flow areas are shown using sediment data from rainfall simulator plots. In spite of some progress made in the development of process-based erosion and sediment yield models from broad shallow flow areas, further developmental modeling efforts must be based on a clear separation between hydrologic and hydraulic processes, and the soil properties which are significant for each.  相似文献   

20.
1 INTRODUCTIONFor many hydraulic engineering problems, the analysis of flow and bed level variations in openchannels is a fundamental prerequisite. forcal methOds fOr alluvial rivers are well develoPednowadays as far as onediInensional descriPtions are concemed. A cOmPrhensive analysis of Ihe wellknown models is Presented by Habersack(l998). HOwever, for a number of Problems such as channelwidening, flow pattem close to sPuds and etc. a more deailed knowledge of the bed level behavio…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号