首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

2.
INON-EQUILIBRIUMMOVEMENTContinualexchangeremainsamongthebedmaterial,bedloadandsuspendedloadinariver.Thebedloadmovesonthebedsurfaceandjumpsinsteps.Itstransportrateperwidthvarieswithvaryingflowintensity;whilethesuspendedloadmoveswithalongstep,evenifthehydraulicfactorsbecomeweaker,itwillnotretUrntothebeduntilfinishingthefallingprocess.ThismeansthatahysteresisexistsbetWeenthechangeofthesuspendedsedimentmovementandflowvelocity.Foruniformandsteadyflow,thesedimentmovementkeepsinequilibriumi…  相似文献   

3.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
1 INTRODUCTION The transport of sediment in rivers with active floodplains is a two-dimensional process because the main channel and the floodplain can have very different transport capacities. Therefore, two-dimensional (2D) models are often used to simulate the streamwise and transverse variations of sediment erosion and deposition. Many 2D numerical models have been presented to simulate sediment transport in floodplains (James, 1985; Pizzuto, 1987; Howard, 1992; Nicholas and Walli…  相似文献   

5.
The artificial replenishment of sediment is used as a method to re-establish sediment continuity downstream of a dam. However, the impact of this technique on the hydraulics conditions, and resulting bed morphology, is yet to be understood. Several numerical tools have been developed during last years for modeling sediment transport and morphology evolution which can be used for this application. These models range from 1D to 3D approaches: the first being over simplistic for the simulation of such a complex geometry; the latter requires often a prohibitive computational effort. However, 2D models are computationally efficient and in these cases may already provide sufficiently accurate predictions of the morphology evolution caused by the sediment replenishment in a river. Here, the 2D shallow water equations in combination with the Exner equation are solved by means of a weak-coupled strategy. The classical friction approach considered for reproducing the bed channel roughness has been modified to take into account the morphological effect of replenishment which provokes a channel bed fining. Computational outcomes are compared with four sets of experimental data obtained from several replenishment configurations studied in the laboratory. The experiments differ in terms of placement volume and configuration. A set of analysis parameters is proposed for the experimental-numerical comparison, with particular attention to the spreading, covered surface and travel distance of placed replenishment grains. The numerical tool is reliable in reproducing the overall tendency shown by the experimental data. The effect of fining roughness is better reproduced with the approach herein proposed. However, it is also highlighted that the sediment clusters found in the experiment are not well numerically reproduced in the regions of the channel with a limited number of sediment grains.  相似文献   

6.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

7.
The fluid-structure interaction curvilinear immersed boundary (FSI-CURVIB) numerical method of Borazjani et al. [3] is extended to simulate coupled flow and sediment transport phenomena in turbulent open-channel flows. The mobile channel bed is discretized with an unstructured triangular mesh and is treated as a sharp-interface immersed boundary embedded in a background curvilinear mesh used to discretize the general channel outline. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations closed with the k − ω turbulence model are solved numerically on a hybrid staggered/non-staggered grid using a second-order accurate fractional step method. The bed deformation is calculated by solving the sediment continuity equation in the bed-load layer using an unstructured, finite-volume formulation that is consistent with the CURVIB framework. Both the first-order upwind and the higher-order hybrid GAMMA schemes [12] are implemented to discretize the bed-load flux gradients and their relative accuracy is evaluated through a systematic grid refinement study. The GAMMA scheme is employed in conjunction with a sand-slide algorithm for limiting the bed slope at locations where the material angle of repose condition is violated. The flow and bed deformation equations are coupled using the partitioned loose-coupling FSI-CURVIB approach [3]. The hydrodynamic module of the method is validated by applying it to simulate the flow in an 180° open-channel bend with fixed bed. To demonstrate the ability of the model to simulate bed morphodynamics and evaluate its accuracy, we apply it to calculate turbulent flow through two mobile-bed open channels, with 90° and 135° bends, respectively, for which experimental measurements are available.  相似文献   

8.
Suspended load in flows on erodible bed   总被引:1,自引:0,他引:1  
Steady state suspended-load of sediment transported in flow over erodible beds usually is treated by the advection-diffusion approach, though in recent years, it is being treated as a two-phase flow phenomenon incorporating kinetics of sediment particles. Among the advection-diffusion approaches, Rouse's equation is the well-known, although a number of researchers in later periods have attempted to improve it by modifying the mixing length concept taking into account other aspects. In this paper, the advection-diffusion approach and associated logarithmic law of flow velocity are revisited. It is concluded from the logarithmic law that the Reynolds shear stress is a linear function of height above the bed, which reduces to bed shear stress in the case of a long horizontal channel. As a consequence, it is shown that the volumetric concentration of sediment is best approximated by the sum of two power laws of height above the bed. An equation is derived for the suspended-load transport rate in terms of elementary functions.  相似文献   

9.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   

10.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
1 mnCnONLocal scour close to bridge piers and abUtInnts has long been a subect of concem for engineers, sinceit can We total or partial collapse of bridges. Until to the Present, local scour has been assessed, moshy,on the basis of resultS of labOratOry stodis. These sthes were cwhed out for steady flows lashng longenough as to gUarantee the develoPment of equlllbrium scour i.e., the develoPmen of scour holes whosedePth and 8haPe no lOnger significanti evolve with hme.In nta, such long l…  相似文献   

12.
13.
1 INTRODUCTIONWhen water flows over a fluvial bed, hydro-dynandc force induced by the flow is acting on thesediment particles lying on the bed. A further increase in flow velocity results in an increase in themagnitude of this fOrce; and sediment particles begin to move if a situation is eventu8lly reached whenthe hydro-dynandc force exceeds a certain critical value. This initial movement of sediment pallicles istermed inciPient motion. The erosion and sedimentation of nuvial beds can be…  相似文献   

14.
For the conservation and restoration of river environment,a sediment replenishment technique, which conveys a part of the sediments excavated and/or dredged from reservoirs to the river below dams is developed and has been implemented tentatively in several dams.Sediments placed as replenishment can be flushed out and transported downstream by floodwater or dam releases.The flushed sediments are expected to contribute to the control of degradation and the variation of the low-flow channel.However,this technique is in the development stage because there are many unknown factors.Therefore,systematic investigations are necessary for practical management of the technique.In this study,the effects of the location of replenishment sediment on sediment flushing and on control of degradation were investigated by means of flume experiments.A two-dimensional numerical model was also developed to further investigate the effects of sediment augmentation on river restoration.The numerical model treats bank erosion and sediment transport over fixed beds. The simulation results were verified against the experimental results.The flushing process of replenishment sediment was investigated first,and then its effect as a countermeasure for river bed degradation was analyzed.Results are summarized as follows:(1) Augmentation at upper riffles is effective for flushing of replenishment sediment and variation of low-flow channel.(2) Amelioration of degradation can be found in the cases of two types of placement.The amelioration effect of upper riffle placement was larger than that of lower riffle placement(3) Aggradation rate of the bed near the replenishment site in the fixed bed is large in the lower riffle placement compared with the upper riffle placement.(4) The numerical model was found to be generally successful as a predictive tool.  相似文献   

15.
Elaborate experiments were performed in a 30 m long, 0.5 m deep and 0.2 m wide laboratory flume to study the process of infiltration of fine sediment into the pores of coarse sediment forming the channel bed material. Different concentrations of suspended load of fine sediment of size 0.064 mm were passed over the channel bed made up of three different types of coarse sediments; two uniform and one nonuniform. The proportion of fine sediment infiltrated into the pores of bed material for each equilibrium concentration of suspended load of fine sediment in the flow was studied during several experimental runs. The proportion of fine sediment within the pores of bed material increased with an increase in the equilibrium concentration of suspended load of fine sediment in the flow. This process continued till the pores within the coarse sediment bed were filled up to the capacity with the fine sediment transported by the flow in suspension. The theoretical value was identified for limit for maximum proportion of fine sediment that can be present within the pores of bed material. On further increase in the concentration of suspended load of fine sediment in the flow, deposition of fine sediment occurs on the surface of the flume bed in the form of ripples of the fine sediment. This condition is defined as 'depositional condition'. Experimental observations on these and related aspects are presented herein.  相似文献   

16.
The lake levels in Lake Michigan‐Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan‐Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan‐Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two‐dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high‐resolution bathymetry and three‐dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship‐induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice cover and dredging in the lower river, require further investigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
1 INTRODUCTION Evolution of the river bed in alluvial channels has been studied by many researchers using analytical and numerical approaches. The use of analytical approach alone is insufficient for solving natural river engineering problems. With rapid growth in computer technology, numerical models have become a popular means for the study of mobile bed hydraulics. During the past decade, several numerical models have been developed. Most of the computer codes, such as HEC2SR (Si…  相似文献   

18.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

19.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

20.
In order to study the morphological evolution of river beds composed of heterogeneous material, the interaction among the different grain sizes must be taken into account. In this paper, these equations are combined with the two-dimensional shallow water equations to describe the flow field. The resulting system of equations can be solved in two ways: (i) in a coupled way, solving flow and sediment equations simultaneously at a given time-step or (ii) in an uncoupled manner by first solving the flow field and using the magnitudes obtained at each time-step to update the channel morphology (bed and surface composition). The coupled strategy is preferable when dealing with strong and quick interactions between the flow field, the bed evolution and the different particle sizes present on the bed surface. A number of numerical difficulties arise from solving the fully coupled system of equations. These problems are reduced by means of a weakly-coupled strategy to numerically estimate the wave celerities containing the information of the bed and the grain sizes present on the bed. Hence, a two-dimensional numerical scheme able to simulate in a self-stable way the unsteady morphological evolution of channels formed by cohesionless grain size mixtures is presented. The coupling technique is simplified without decreasing the number of waves involved in the numerical scheme but by simplifying their definitions. The numerical results are satisfactorily tested with synthetic cases and against experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号