首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We present laboratory and field evidence that in mountainous catchment‐fan systems persistent alluvial fanhead aggradation and trenching may result from infrequent, large sediment inputs. We suggest that the river‐fan systems along the fault‐bounded range front of the western Southern Alps, New Zealand, are likely to be in a dynamic equilibrium on ≥103‐yr timescales, superimposed on which their fanheads undergo long‐term cumulative episodic aggradation. These fanheads are active only in rare events, do not take part in the usual behaviour of the catchment‐fan system and require much longer to exhibit dynamic equilibrium than the rest of the fan. These findings (1) increase our knowledge of the effects of extreme events on alluvial fan morphodynamics in humid climates, (2) question the general applicability of inferring past climatic or tectonic regimes from alluvial‐fan morphology and stratigraphy and (3) provide a conceptual basis for hazard zonation on alluvial fans. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The surface of the 40 000 km2 Okavango alluvial fan is remarkably smooth, and almost everywhere lies within two to three metres of a perfectly smooth theoretical surface. Deviations from this perfect surface give rise to islands in the Okavango wetlands. This micro‐topography was mapped by assigning empirical elevations to remotely sensed vegetation community classes, based on the observation that vegetation is very sensitive to small, local differences in elevation. Even though empirical, the method produces fairly accurate results. The technique allows estimation of depths of inundation and therefore will be applicable even when high resolution radar altimetry becomes available. The micro‐topography has arisen as a result of clastic sedimentation in distributary channels, which produces local relief of less than two metres, and more importantly as a result of chemical precipitation in island soils, which produces similar local relief. The micro‐topography is, therefore, an expression of the non‐random sedimentation taking place on the fan. Volume calculations of islands extracted from the micro‐topography, combined with estimates of current sediment in?ux, suggest that the land surface of the wetland may only be a few tens of thousands of years old. Constant switching of water distribution, driven by local aggradation, has distributed sediment widely. Mass balance calculations suggest that over a period of c. 150 000 years all of the fan would at one time or other have been inundated, and thus subject to sedimentation. Coalescing of islands over time results in net aggradation of the fan surface. The amount of vertical aggradation on islands and in channels is restricted by the water depth. Restricted vertical relief, in turn, maximizes the distribution of water, limiting its average depth. Aggradation in the permanent swamps occurs predominantly by clastic sedimentation. Rates of aggradation here are very similar to those in the seasonal swamps, maintaining the overall gradient, possibly because of the operation of a feedback loop between the two. The limited amount of local aggradation arising from both clastic and chemical sedimentation, combined with constant changes in water distribution, has resulted in a near‐perfect conical surface over the fan. In addition to providing information on sedimentary processes, the micro‐topography has several useful hydrological applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamics and the surface evolution of a post‐LGM debris‐flow‐dominated alluvial fan (Tartano alluvial fan), which lies on the floor of an alpine valley (Valtellina, Northern Italy), have been investigated by means of an integrated study comprising geomorphological field work, a sedimentological study, photointerpretation, quantitative geomorphology, analysis of ancient to modern cartography and consultation of historical documents and records. The fan catchment meteoclimatic, geological and geomorphological characteristics result in fast rates of geomorphic reorganization of the fan surface (2 km2). The dynamics of the fan are determined by the alternation of low‐return period catastrophic alluvial events dominated by non‐cohesive debris flows triggered by extreme rainstorms which caused aggradation and steepening of the fan and avulsion of its main channel, with periods of low to moderate streamflow discharge punctuated by low‐ to intermediate‐magnitude flood events, causing slower but steady topographic reworking. The most ancient parts of the fan surface date back at least to the first half of the 19th century, but most of the fan surface has been restructured after 1911, mainly during the debris‐flow‐dominated events of 1911 and 1987. Phases of rapid fan toe incision and fan degradation have been recognized; since the 1930s or 1940s, the Tartano fan has been subjected to a state of deep entrenchment and narrowing of the main trunk channel and distributary area. Post‐Little Ice Age climate change and present‐day surface uplift rates have been considered as possible explanations for the observed geomorphic evolution, but tectonic or climatic controls cannot account for the order of magnitude of the erosional pace. Anthropogenic controls plausibly override the natural ones: in particular, the building of a dam in the late 1920s, about 2 km upstream of the fan, seems to have triggered fan dissection, having altered the sediment discharge through sediment retention. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A model for describing river channel pro?le adjustments through time is developed and applied to a river responding to base‐level lowering in order to examine the effect of channel widening and downstream aggradation on equilibrium timescales. Across a range of boundary conditions, downstream aggradation controlled how quickly a channel reached equilibrium. Channel widening either increased or decreased the equilibrium timescale, depending on whether or not sediment derived from widening was deposited downstream. Results suggest that pro?le adjustments are more important than channel width adjustments in controlling equilibrium timescales for a channel responding to base‐level lowering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Landscapes subject to constant forcing tend to evolve toward equilibrium states in which individual landforms have similar characteristics. Yet, even in landscapes at or near equilibrium, there can be significant variability among individual landforms. Furthermore, sites subject to similar processes and conditions can have different mean landform characteristics. This variability is often ascribed to on‐going transient evolution, or to heterogeneity in processes, material properties, forcing, or boundary conditions. Three surprising outcomes of landform evolution models suggest, however, that such variability could arise in equilibrium landscapes without any heterogeneity in the physical processes shaping the topography. First, homogeneous systems subjected to constant forcing can generate a heterogeneous distribution of equilibrium landforms. Second, even simple non‐linear systems can have multiple stable equilibrium states. Third, evolving landscapes can exhibit path dependence and hysteresis. We show how these three mechanisms can produce variability in landforms that arises from the characteristics of the initial topographic surface rather than from heterogeneity in geomorphic processes. Numerical experiments on the formation of low‐order fluvial valleys and transportational cyclic steps in erodible streambeds illustrate why it is important to consider the influence of initial conditions when comparing models with natural topography, estimating the uncertainty of model predictions, and studying how landscapes respond to disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamics of sediment transport capacity in gravel‐bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment‐routing models in drainage systems. We examine transport‐storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and degradation in Cuneo Creek, a steep (3%) gravel‐bed channel in northern California, with measurements from a series of flume runs modeling those events. An armored, single‐thread channel was formed before feed rates were increased in each aggradation run. Output rates increased as the channel became finer and later widened, steepened, and braided. After feed rates were cut, output rates remained high or increased in early stages of degradation as the incising channel remained fine‐grained, and later decreased as armoring intensified. If equilibrium was not reached before sediment feed rate was cut, then a rapid transition from a braided channel to a single‐thread channel caused output rates for a given storage volume to be higher during degradation than during aggradation. Variations in channel morphology, and surface bed texture during runs that modeled the three cycles of aggradation and degradation were similar to those observed in Cuneo Creek and provide confidence in interpretations of the history of change: Cuneo Creek aggraded rapidly as it widened, shallowed, and braided, then degraded rapidly before armoring stabilized the channel. Such morphology‐driven changes in transport capacity may explain the formation of flood terraces in proximal channels. Transport‐storage relations can be expected to vary between aggradation and degradation and be influenced by channel conditions at the onset of changes in sediment supply. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

8.
Long‐term aggradation of the Waiho River, South Westland, New Zealand, has now raised the head of its alluvial fan to unprecedented elevations. In its natural state the river would, like all other major rivers in the area, be somewhat incised into its fanhead. The only relevant factor able to account for the aggradation is the presence of control banks (‘stopbanks’ in local parlance) that restrict the ability of the river to move over the whole of its natural fanhead. A 1 : 3333 scale physical hydraulic model (a ‘microscale’ model) was used to study this situation. An alluvial fan was generated in the model and allowed to develop to equilibrium with steady inputs of water and sediment within boundaries geometrically similar to those of the natural unrestricted Waiho River. The boundaries were then altered to represent the presence of the stopbanks, and the fan allowed to continue evolving under the same water and sediment inputs. The model fanhead aggraded in a spatial pattern similar to that recorded on the Waiho. Taking into consideration the limitations of microscale modelling, these results indicate that the aggradation in the Waiho is a result of the lateral restriction of the river by stopbanks. This poses fundamental questions about the variables that control the behaviour of alluvial fans. The results also suggest that microscale modelling can be used to make reliable quantitative predictions of the effects of engineering works on rivers, in spite of the low level of dynamic similarity with the prototype compared to that in larger‐scale models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The present analysis derives a stability criterion for long‐term equilibrium channel heads. The concept of finite perturbation analysis is presented, during which the surface is subjected to perturbations of a finite amplitude and resulting changes in flow path structure and slope are computed. Based on these quantities the analysis predicts whether the perturbed location is going to erode, be filled in or remain steady. The channel head is defined geometrically as the focus point of converging flow lines at the bottom of hollows. It is demonstrated that stability at the channel head grows out of the competition between the rate of flow path convergence and the degree of profile concavity. Analytical functions are derived to compute channel head‐contributing area and ‐slope, flow path convergence and profile concavity as a function of perturbation depth, distance from the crest and the initial slope. In a numerical model these quantities point to the long‐term equilibrium channel head position, which is shown to depend also on the width to length ratio of hollows. It is also demonstrated that the equilibrium channel head position is sensitive to the base‐level lowering/non‐dimensional slope length ratio and to the slope of the initial topography. Morphometrical measurements both in the field and on simulated topographies were used to test the theoretical predictions.  相似文献   

10.
Sediment flux dynamics in fluvial systems have often been related to changes in external drivers of topography, climate or land cover. It is well known that these dynamics are non‐linear. Recently, model simulations of fluvial activity and landscape evolution have suggested that self‐organization in landscapes can also cause internal complexity in the sedimentary record. In this contribution one particular case of self‐organization is explored in the Sabinal field study area, Spain, where several dynamic zones of sedimentation and incision are observed along the current river bed. Whether these zones can be caused by internal complexity was tested with landscape evolution model (LEM) LAPSUS (Landscape Process Modelling at Multi‐dimensions and Scales). During various 500 year simulations, zones of sedimentation appear to move upstream and downstream in eroding river channels (‘waves’). These waves are visualized and characterized for a range of model settings under constant external forcing, and the self‐organizing process behind their occurrence is analysed. Results indicate that this process is not necessarily related to simplifications in the model and is more generic than the process of bed‐armouring that has recently been recognized as a cause for complexity in LEM simulations. We conclude that autogenic sediment waves are the result of the spatial propagation in time of feedbacks in local transport limited (deposition) and detachment limited (erosion) conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The storms usually associated with rill development in nature are seldom prolonged, so development is often interrupted by interstorm disturbances, e.g. weathering or tillage. In laboratory simulated rainfall experiments, active rill development can be prolonged, and under these conditions typically passes through a period of intense incision, channel extension and bifurcation before reaching quasi‐stable conditions in which little form change occurs. This paper presents laboratory experiments with coarse textured soils under simulated rainfall which show how channel adjustment processes contribute to the evolution of quasi‐stability. Newly incised rills were stabilized for detailed study of links between rill configuration and flow energy. On a loamy sand, adjustment towards equilibrium occurred due to channel widening and meandering, whereas on a sandy loam, mobile knickpoints and chutes, pulsations in flow width and flow depth and changes in stream power and sediment discharge occurred as the channel adjusted towards equilibrium. The tendency of rill systems towards quasi‐stability is shown by changes in stream power values which show short‐lived minima. Differences in energy dissipation in stabilized rills indicate that minimization of energy dissipation was reached locally between knickpoints and at the downstream ends of rills. In the absence of energy gradients in knickpoints and chutes, stabilized rill sections tended toward equilibrium by establishing uniform energy expenditure. The study confirmed that energy dissipation increased with flow aspect ratio. In stabilized rills, flow acceleration reduced energy dissipation on the loamy sand but not on the sandy loam. On both soils flow deceleration tended to increase energy dissipation. Understanding how rill systems evolve towards stability is essential in order to predict how interruptions between storms may affect long‐term rill dynamics. This is essential if event‐based physical models are to become effective in predicting sediment transport on rilled hillslopes under changing weather and climatic conditions. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

12.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods.  相似文献   

13.
The sediment saturation recovery process (i.e. the adaptation of suspended sediment concentration [SSC] to local forcing) is the main feature of the non‐equilibrium suspended sediment transport (SST) frequently occurring in fluvial, estuarine and coastal waters. In order to quantitatively describe this phenomenon, a series solution is analytically derived, including the evolution of both vertical SSC profile and near‐bed sediment flux (NBSF), and is verified by net erosion and net deposition experiments, respectively. The results suggest that the sediment saturation recovery process involves vertically varying fluxes that are not represented correctly by depth‐averaging. Consequently, a vertical two‐dimensional (2D) combined scheme is established and applied respectively in to a dredged trench and to a sand wave feature to demonstrate this argument. By analyzing the variations of the calculated depth‐averaged SSC and NBSF we reveal that the equilibrium state presented by the sediment carrying capacity (SCC) form of the NBSF, which is usually applied in depth‐integrated SST models, lags behind the actual dynamic bed equilibrium state. Moreover, the key factor α, the so‐called saturation recovery coefficient within this form, is not only a function of local Rouse number but also is influenced by the local SSC profile. Finally, a three‐dimensional (3D) non‐orthogonal curvilinear body‐fitted SST model is developed and validated in the Yangtze estuary, China, combined with the in situ hourly hydrographic data from August 14–15, 2007 during spring tide in the wet season. Model results confirm that the vertically varying sediment saturation recovery process, the discrepancies between the actual and SCC form of NBSF and non‐constant value of α are significant in actual real geomorphic cases. The quantitative morphological change resulting from variations in environmental conditions may not be correctly represented by uncorrected depth‐integrated SST models if they do not treat the effects of vertical motion on the sediment saturation recovery process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment delivery from hillslopes to trunk streams represents a significant pathway of mass transfer in the landscape, with a large fraction facilitated by gully systems. The internal gully geomorphic dynamics represent a considerable gap in many landscape and empirical erosion models, therefore a better understanding of these processes over longer timescales (10–104 years) is needed. This study analyses the sediment mass balance and storage dynamics within a headwater gully catchment in central Europe over the last ~12 500 years. Human induced erosion resulted in hillslope erosion rates ~2.3 times higher than under naturally de‐vegetated conditions (during the Younger Dryas), however the total sediment inputs to the gully system (and therefore gully aggradation), were similar. Net gully storage has consistently increased to become the second largest term in the sediment budget after hillslope erosion (storage is ~45% and ~73% of inputs during two separate erosion and aggradation cycles). In terms of the depletion of gully sediment storage, the sediment mass balance shows that export beyond the gully fan was not significant until the last ~500 years, due to reduced gully fan accommodation space. The significance of storage effects on the gully sediment mass balance, particularly the export terms, means that it would be difficult to determine the influences of human impact and/or climatic changes from floodplain or lake sedimentary archives alone and that the sediment budgets of the headwater catchments from which they drain are more likely to provide these mechanistic links. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Avulsion, the natural relocation of a river, is a key process in the evolution of subaerial fans, river floodplains and deltas. The causes of avulsion are poorly understood, which is partly due to the scarcity of field studies of present avulsions. At present, two avulsions are occurring on the middle and lower Taquari megafan, Pantanal basin, south‐western Brazil. Here we present an analysis of the causes of these avulsions based on field and remote sensing data and show that avulsions on megafans can be controlled by both upstream and downstream processes. The middle fan avulsion (started in 1997–1998) is a result of upstream control: overbank aggradation was caused by the (variable) input of sandy sediment into the system, which caused channel‐belt superelevation and also created an easily erodible subsurface favouring bank retreat, crevassing, and scour of deep floodplain channels. The sandy subsurface in this area is inferred to have been a major factor in the causation of this avulsion under conditions of little gradient advantage. The lower fan avulsion (started c. 1990) results from interplay of upstream and downstream controls, the latter being related to the local base level (the Paraguay River floodplain) at the toe of the fan. Channel and overbank aggradation on the lower fan was influenced by fan sub‐lobe progradation and channel backfilling. Fan sub‐lobe progradation caused a significant gradient advantage of the avulsion channel over the parent channel. Avulsions are commonly supposed to be preferentially triggered by high‐magnitude floods, when there is considerable channel‐belt superelevation. However, both avulsions studied by us were triggered by small to average floods, with modest channel‐belt superelevation. We conclude that flood magnitude and channel‐belt superelevation have been overrated as causes of avulsion, and demonstrate additional causes that influence the growth of crevasses into avulsions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Epigenetic gorges form when channels that have been laterally displaced during episodes of river blockage or aggradation incise down into bedrock spurs or side‐walls of the former valley rather than excavating unconsolidated fills and reinhabiting the buried paleovalley. Valley‐filling events that promote epigenetic gorges can be localized, such as a landslide dam or an alluvial/debris flow fan deposit at a tributary junction, or widespread, such as fluvial aggradation in response to climate change or fluctuating base‐level. The formation of epigenetic gorges depends upon the competition between the resistance to transport, strength and roughness of valley‐filling sediments and a river's ability to sculpt and incise bedrock. The former affects the location and lateral mobility of a channel incising into valley‐filling deposits; the latter determines rates of bedrock incision should the path of the incising channel intersect with bedrock that is not the paleovalley bottom. Epigenetic gorge incision, by definition, post‐dates the incision that originally cut the valley. Strath terraces and sculpted bedrock walls that form in relation to epigenetic gorges should not be used to directly infer river incision induced by tectonic activity or climate variability. Rather, they are indicative of the variability of short‐term bedrock river incision and autogenic dynamics of actively incising fluvial landscapes. The rate of bedrock incision associated with an epigenetic gorge can be very high (>1 cm/yr), typically orders of magnitude higher than both short‐ and long‐term landscape denudation rates. In the context of bedrock river incision and landscape evolution, epigenetic gorges force rivers to incise more bedrock, slowing long‐term incision and delaying the adjustment of rivers to regional tectonic and climatic forcing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Evolution mechanism of the western Pacific subtropical high   总被引:4,自引:0,他引:4  
Ever since Charney et al.[1] studied the multiple equilibrium states in atmosphere with highly truncated spectral method in 1979, many Chinese researchers, such as Li Maicun et al. (1983)[2], Liu Chongjian et al. (1983)[3], Miu Jinhai et al. (1985)[4] and…  相似文献   

18.
Rapids in river canyons are frequently found at sites where debris fans constrict flow along the channel. Whereas some fans may have persisted in the same location with unchanging geometry for centuries to millennia, others have changed in response to flow conditions imposed by successive floods. Such a change in boundary conditions may alter local flow hydraulics. This paper utilizes two-dimensional flow modelling to compare flood hydraulics along two alternative versions of an idealized reach of a river canyon: one with uniform width, gradient and cross-section, and a second perturbed by a prominent debris fan along the valley wall. The flow pattern along the reach with the fan is far more complex than the pattern along the uniform reach. Maximum velocity along the debris-fan reach is up to 50 per cent higher than along the uniform reach, maximum bed shear stress is up to three or four times higher, and an area of supercritical flow is predicted extending from the nose of the fan into the zone of flow expansion immediately downstream. Comparison of model output along longitudinal profiles of the two reaches indicates that the backwater effect of the fan extends several valley widths upstream. Predicted flows based on the same stage are as much as 190 to 230 per cent greater along the uniform reach than along the debris-fan reach. Reconstruction of palaeoflood discharge based on remnant flood marks in the vicinity of the fan would be sensitive to assumptions about boundary conditions that existed in the past; this effect relaxes over a longitudinal distance of several hundred metres. Furthermore there are significant cross-stream gradients that change slope and direction several times in the vicinity of the fan, calling into question the utility of one-dimensional step-backwater hydraulic models for predicting high-water marks in areas of complex valley morphology.  相似文献   

19.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号