首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent land cover changes on the Tibetan Plateau: a review   总被引:6,自引:0,他引:6  
This paper reviews the land cover changes on the Tibetan Plateau during the last 50 years partly caused by natural climate change and, more importantly, influenced by human activities. Recent warming trends on the plateau directly influence the permafrost and snow melting and will impact on the local ecosystem greatly. Human activities increased rapidly on the plateau during the last half century and have significant impacts on land use. Significant land cover changes on the Tibetan Plateau include permafrost and grassland degradation, urbanization, deforestation and desertification. These changes not only impact on local climate and environment, but also have important hydrological implications for the rivers which originate from the plateau. The most noticeable disasters include the flooding at the upper reaches of Yangtze River and droughts along the middle and lower reaches of Yellow River. Future possible land cover changes under future global climate warming are important but hard to assess due to the deficits of global climate model in this topographically complex area. Integrated investigation of climate and ecosystems, including human-beings, are highly recommended for future studies.  相似文献   

2.
Response of inland lake dynamics over the Tibetan Plateau to climate change   总被引:10,自引:0,他引:10  
The water balance of inland lakes on the Tibetan Plateau (TP) involves complex hydrological processes; their dynamics over recent decades is a good indicator of changes in water cycle under rapid global warming. Based on satellite images and extensive field investigations, we demonstrate that a coherent lake growth on the TP interior (TPI) has occurred since the late 1990s in response to a significant global climate change. Closed lakes on the TPI varied heterogeneously during 1976–1999, but expanded coherently and significantly in both lake area and water depth during 1999–2010. Although the decreased potential evaporation and glacier mass loss may contribute to the lake growth since the late 1990s, the significant water surplus is mainly attributed to increased regional precipitation, which, in turn, may be related to changes in large-scale atmospheric circulation, including the intensified Northern Hemisphere summer monsoon (NHSM) circulation and the poleward shift of the Eastern Asian westerlies jet stream.  相似文献   

3.
Lake expansion since the middle of the 1990s is one of the most outstanding environmental change events in the Tibetan Plateau (TP). This expansion has mainly occurred in the Inner TP, a vast endorheic basin with an area of about 708,000 km2 and containing about 780 lakes larger than 1 km2. The total lake area of the Inner TP has increased from 24,930 km2 in 1995 to 33,741 km2 in 2015. The variability of the lake area in the coming decades is crucial for infrastructure planning and ecology policy for this remote region. In this study, a lake mass balance model was developed to describe the lake area response to climate change. First, the model was used to inversely estimate the change in precipitation from the change in lake volume. The result shows that precipitation has increased by about 21?±?7% since the middle of the 1990s, as seen in GPCC global data set. Then, the lake size in the coming two decades was predicted by the model driven with either current climate or a projected future climate, showing the lake area would expand continuously, but at a lower rate than before. Both predictions yield a total lake area of 36150?±?500 km2 in 2025 and a rise of average lake level by about 6.6?±?0.3 m from 1995 to 2025. However, the two predictions become disparate in the second decade (2026–2035), as the future climate is more warming and wetting than the current climate. It is noted that the prediction of lake expansion is robust for the entire inner TP lake system but not always applicable to individual subregions or specific lakes due to their spatiotemporal heterogeneity.  相似文献   

4.
利用1951—2009年中国160站的月降水和月平均温度资料,通过计算地表湿润指数,在分析其与降水及气温联系的基础上,探讨了中国区域平均地表湿润指数的年代际变化特征差异,给出了地表湿润指数年趋势的地理分布。结果表明:1951—2009年,中国北方的西北地区东部、华北和东北地区长江中下游地区及东南部分地区以干旱化趋势为主,这些地区干旱化趋势的产生与降水年际变差大、年内分配不均,降水持续减少和气温升高密切相关。东南、西南地区及西藏地区于20世纪90年代初期有湿向干的趋势转换,虽然长江中下游地区在70年代初期有明显的干向湿的趋势变换,但于90年代同样出现湿向干的趋势转换,并一直持续显著的干旱化。  相似文献   

5.
气候和气候变化领域的研究进展   总被引:8,自引:1,他引:8       下载免费PDF全文
该文回顾了过去几十年来中国气象科学研究院在气候和气候变化研究方面的成果, 主要包括对我国历史气候资料的恢复、重建和整理, 气候区划, 对我国气温和降水的研究, 对青藏高原温度和降水、近地层与边界层地-气过程, 大气热源特征和臭氧变化的研究, 古气候模拟, 对气候变化的预测理论和方法以及气候和气候变化对我国社会、经济的影响等方面的研究。近50年中国气象科学研究院收集大量气候资料并整理出版了《中国近五百年旱涝分布图集》; 对风能等资源进行了气候区划; 明确了近几十年中国地区在20世纪40年代和90年代出现了两个暖期, 20世纪50—60年代出现了相对冷期; 在全球变暖的背景下, 以四川为中心的西南地区自20世纪50年代到80年代一直在变冷; 20世纪80年代以后, 多雨带由华北南移到长江中下游地区; 提出青藏高原近地层与边界层地-气过程的综合物理图像; 发现青藏高原夏季臭氧低值中心; 模拟出青藏高原隆起过程中中国气候变化特征; 揭示出东亚季风环流系统及其成员; 设计了多种预报方法; 还将气候和气候变化研究成果向国家经济转化。  相似文献   

6.
Since the 1990s, the Qinghai–Tibetan Plateau(QTP) has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground. A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG) has long been recognized. Still, a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will b...  相似文献   

7.
Improving the understanding of cropland change and its driving factors is a current focus for policy decision-makers in China. The datasets of cropland and cropland changes from the 1970s to the 2000s were used to explore whether climate change has produced spatio-temporal changes to cropland in northern China since the 1970s. Two representative indicators of heat and water resources, which are important determinants of crop growth and productivity, were considered to track climate change, including active accumulated temperatures ≥10 °C (AAT10) and the standardized precipitation evapotranspiration index (SPEI). Our results showed that rapid cropland change has occurred in northern China since the 1970s, and the area of cropland reclamation (10.23 million ha) was much greater than that of abandoned cropland (2.94 million ha). In the 2000s, the area of cropland with AAT10 higher than 3,000 °C·d increased, while the area of cropland with an SPEI greater than 0.25 decreased compared to the 1970s, 1980s and 1990s. It appears that climate warming has provided thermal conditions that have aided rapid cropland reclamation in northern China since the 1970s, and drier climatic conditions did not become a limiting factor for cropland reclamation, especially from the 1990s to the 2000s. Approximately 70 % of cropland reclamation areas were located in warmer but drier regions from the 1990s to the 2000s, and approximately 40 % of cropland abandonment occurred in warmer and wetter conditions that were suitable for agriculture during the periods from the 1970s to the 1980s and the 1990s to the 2000s. Our results suggest that climate change can be considered a driving factor of cropland change in the past several decades in northern China, in addition to socioeconomic factors.  相似文献   

8.
Frost-free season was an important index for extreme temperature, which was widely discussed in agriculture and applied meteorology research. The frost-free season changed, which was associated with global warming in the past few decades. In this study, the changes in three indices (the last frost day in spring, the first frost day in autumn, and the frost-free season length) of the frost-free season were investigated at 73 meteorological stations in the Tibetan Plateau from 1960 to 2010. Results showed that the last frost day in spring occurred earlier, significantly in 39 % of the 73 stations. For the regional average, the last frost day in spring occurred earlier, significantly at the rate of 1.9 days/decade during the last 50 years. The first frost day in autumn occurred later, significantly in 31 % of the stations, and the regional average rate was 1.5 days/decade from 1960 to 2010. The changing rate of the first frost day in autumn below 3,000 m was 1.8 times larger than the changing rate above 3,000 m. In addition, the first frost day in autumn above 3,000 m fluctuated dramatically before the early 1990s and then it was later sharply after the early 1990s. The frost-free season length increased significantly at almost all stations in the Tibetan Plateau from 1960 to 2010. For the regional average, the frost-free season lengthened at the rate of 3.1 days/decade. The changing rate of the frost-free season length below 3,000 m was more significant than the changing rate above 3,000 m. Eight indices of large-scale atmospheric circulation were employed to investigate the potential cause of the frost-free season length change in the Tibetan Plateau during the past 50 years. There was a significant relationship between the frost-free season length and the Northern Hemisphere Polar Vortex indices. The weakening cold atmospheric circulation might be an essential factor to the Tibetan Plateau warming since 1960.  相似文献   

9.
Alpine ecosystems in permafrost region are extremely sensitive to climate change. The headwater regions of Yangtze River and Yellow River of the Qinghai-Tibet plateau permafrost area were selected. Spatial-temporal shifts in the extent and distribution of tundra ecosystems were investigated for the period 1967–2000 by landscape ecological method and aerial photographs for 1967, and satellite remote sensing data (the Landsat’s TM) for 1986 and 2000. The relationships were analyzed between climate change and the distribution area variation of tundra ecosystems and between the permafrost change and tundra ecosystems. The responding model of tundra ecosystem to the combined effects of climate and permafrost changes was established by using statistic regression method, and the contribution of climate changes and permafrost variation to the degradation of tundra ecosystems was estimated. The regional climate exhibited a tendency towards significant warming and desiccation with the air temperature increased by 0.4–0.67°C/10a and relative stable precipitation over the last 45 years. Owing to the climate continuous warming, the intensity of surface heat source (HI) increased at the average of 0.45 W/m2 per year, the difference of surface soil temperature and air temperature (DT) increased at the range of 4.1°C–4.5°C, and the 20-cm depth soil temperature within the active layer increased at the range of 1.1°C–1.4°C. The alpine meadow and alpine swamp meadow were more sensitive to permafrost changes than alpine steppe. The area of alpine swamp meadow decreased by 13.6–28.9%, while the alpine meadow area decreased by 13.5–21.3% from 1967 to 2000. The contributions of climate change to the degradation of the alpine meadow and alpine swamp was 58–68% and 59–65% between 1967 and 2000. The synergic effects of climate change and permafrost variation were the major drivers for the observed degradation in tundra ecosystems of the Qinghai-Tibet plateau.  相似文献   

10.
Comparison with the climate of the past centuries has demonstrated until recently the unprecedented warming at the scale of the last millennium at least. This is embodied in the latest report of the Intergovernmental Panel on Climate Change. However, recently the studies have appeared putting this statement into question. A new 1000-year long reconstruction based on the tree-ring variations of the long-living Chinese junipers (Sabina Przewalskii Kom.) growing in the northeastern part of the Tibetan Plateau reveals that the climate during and immediately after the medieval maximum of solar activity was warmer that the present-day one, all subsequent cooling coincided with the periods of low solar activity, and the warming in the 1970s–1990s followed a new maximum of the solar activity which peak fell on the 1960s.  相似文献   

11.
长江流域地区水汽输送及其对旱涝影响研究综述   总被引:2,自引:1,他引:1  
蒋兴文  李跃清 《气象科学》2009,29(1):138-142
大气水汽输送在气候系统中起着重要的作用.本文回顾了近年来关于长江流域地区水汽输送的相关研究进展,主要包括长江流域水汽输送的基本特征,旱涝年水汽输送的异常特征,青藏高原对长江流域水汽输送的影响,青藏高原水汽输送与长江流域旱涝的关系.  相似文献   

12.
利用1961-2005年中国300个台站的逐日雾资料及能见度资料,分析了不同等级雾的时空分布及基本气候特征、雾生时间和持续时间的年代际变化。结果表明:雾的空间分布范围随着能见度的降低而减小;随时间的变化多呈减少趋势,但沿长江及东部沿海的重浓雾日在20世纪70年代发生突变,雾日增多;内陆、南部沿海雾生时间多在清晨06:00-08:00,东部及沿海多发生在夜间20:00-21:00;雾生频次经历少-多-少的年代际变化,90年代后频次减少,个别区域雾生时间随着年代的延伸而推后;大部分地区雾的持续时间在3 h内,12 h以上的雾区多集中在沿海、华北和陇东-山西地区,沿海、四川盆地、云贵地区90年代12 h以上雾的发生频次最高。  相似文献   

13.
The Tibetan Plateau has experienced rapid warming like most other alpine regions. Regional assessments show rates of warming comparable with the arctic region and decreasing Asian summer monsoons. We used meteorological station daily precipitation and daily maximum and minimum temperature data from 80 stations in the eastern Tibetan Plateau of southwest China to calculate local variation in the rates and seasonality of change over the last half century (1960–2008). Daily low temperatures during the growing season have increased greatly over the last 24 years (1984–2008). In sites of markedly increased warming (e.g., Deqin, Yunnan and Mangya, Qinghai), daily and growing season daily high temperatures have increased at a rate above 5 °C/100 years. In Deqin, precipitation prior to the 1980s fell as snow whereas in recent decades it has shifted to rain during March and April. These shifts to early spring rains are likely to affect plant communities. Animals like yaks adapted to cold climates are also expected to show impacts with these rising temperatures. This region deserves further investigation to determine how these shifts in climate are affecting local biodiversity and livelihoods.  相似文献   

14.
中国不同等级雾日的气候特征   总被引:4,自引:0,他引:4  
 利用1961-2005年中国300个台站的逐日雾资料及能见度资料,分析了不同等级雾的时空分布及基本气候特征、雾生时间和持续时间的年代际变化。结果表明:雾的空间分布范围随着能见度的降低而减小;随时间的变化多呈减少趋势,但沿长江及东部沿海的重浓雾日在20世纪70年代发生突变,雾日增多;内陆、南部沿海雾生时间多在清晨06:00-08:00,东部及沿海多发生在夜间20:00-21:00;雾生频次经历少-多-少的年代际变化,90年代后频次减少,个别区域雾生时间随着年代的延伸而推后;大部分地区雾的持续时间在3 h内,12 h以上的雾区多集中在沿海、华北和陇东-山西地区,沿海、四川盆地、云贵地区90年代12 h以上雾的发生频次最高。  相似文献   

15.
针对青藏高原热力强迫作用对东亚夏季风强度、南海夏季风爆发早晚、南海周边区域旱涝的影响,以及在全球变暖背景下其对降水格局的影响等科学研究进行了总结回顾,并就青藏高原热力作用对南海周边区域夏季气候的影响科学问题进行了探讨。研究表明,高原冬春积雪异常通过影响雪盖反照率、改变辐射平衡和通过积雪-水文效应改变土壤湿度两个途径来影响东亚夏季风;通过改变大陆-海洋经向热力对比影响南海季风爆发早晚;通过改变西太平洋副高位置和季风环流变化来影响华南和长江流域夏季降水的分布。在全球变暖背景下,青藏高原感热加热的减弱可能对降水年代际“南涝北旱”格局的形成具有重要贡献。随着全球变暖减缓,青藏高原中部和东部的感热呈现出复苏态势,“南涝北旱”的降水格局分布在将来有可能被打破。   相似文献   

16.
利用NCAR的全球气候模式 (CCM3) 及第二次青藏高原边界层观测试验的研究结果, 对青藏高原上大气边界层高度的作用进行了研究, 分析了夏季青藏高原地区与长江流域上空的环流状况。研究表明:青藏高原的边界层高度特征对高原东南部地区以及长江流域出现强烈的垂直上升运动及其低层辐合、高层辐散存在着显著的动力效应, 深厚的高原边界层特征将使长江流域夏季区域性的云量及降水明显增加, 河套地区与黄河流域的夏季云量及降水有所减少。  相似文献   

17.
Gao  Yanhong  Chen  Fei  Miguez-Macho  Gonzalo  Li  Xia 《Climate Dynamics》2020,55(9-10):2921-2937

The precipitation recycling (PR) ratio is an important indicator that quantifies the land-atmosphere interaction strength in the Earth system’s water cycle. To better understand how the heterogeneous land surface in the Tibetan Plateau (TP) contributes to precipitation, we used the water-vapor tracer (WVT) method coupled with the Weather Research and Forecasting (WRF) regional climate model. The goals were to quantify the PR ratio, in terms of annual mean, seasonal variability and diurnal cycle, and to address the relationships of the PR ratio with lake treatments and precipitation amount. Simulations showed that the PR ratio increases from 0.1 in winter to 0.4 in summer when averaged over the TP with the maxima centered at the headwaters of three major rivers (Yangtze, Yellow and Mekong). For the central TP, the highest PR ratio rose to over 0.8 in August, indicating that most of the precipitation was recycled via local evapotranspiration in summer. The larger daily mean and standard deviation of the PR ratio in summer suggested a stronger effect of land-atmosphere interactions on precipitation in summer than in winter. Despite the relatively small spatial extent of inland lakes, the treatment of lakes in WRF significantly impacted the calculation of the PR ratio over the TP, and correcting lake temperature substantially improved both precipitation and PR ratio simulations. There was no clear relationship between PR ratio and precipitation amount; however, a significant positive correlation between PR and convective precipitation was revealed. This study is beneficial for the understanding of land-atmosphere interaction over high mountain regions.

  相似文献   

18.
The impacts of climate change on agricultural production systems in China   总被引:7,自引:0,他引:7  
Climate change can bring positive and negative effects on Chinese agriculture, but negative impacts tend to dominate. The annual mean surface temperature has risen about 0.5–0.8 °C. The precipitation trends have not been identified during the past 100 years in China, although the frequency and intensity of extreme weather/climate events have increased, especially of drought. Water scarcity, more frequent and serious outbreaks of insects and diseases, and soil degradation caused by climate change have impacted agro-environmental conditions. However, temperature rise prolonged the crop growth seasons and cold damages have reduced in Northeast China. The projection of climate change indicates that the surface temperature will continue to increase with about 3.9 to 6.0 °C and precipitation is expected to increase by 9 to 11 % at the end of 21st century in China. Climate warming will provide more heat and as a consequence, the boundary of the triple-cropping system (TCS) will extend northwards by as much as 200 to 300 km, from the Yangtze River Valley to the Yellow River Basin, and the current double-cropping system (DCS) will move to the central part of China, into the current single cropping system (SCS) area which will decrease in SCS surface area of 23.1 % by 2050. Climate warming will also affect the optimum location for the cultivation of China’s main crop varieties. If no measures are taken to adapt to climate changes, compared with the potential yield in 1961–1990, yields of irrigated wheat, corn and rice are projected to decrease by 2.2–6.7 %, 0.4 %–11.9 % and 4.3–12.4 % respectively in the 2050s. Climate warming will enhance potential evaporation and reduce the availability of soil moisture, thus causing a greater need for agricultural irrigation, intensifying the conflict between water supply and demand, especially in arid and semi-arid areas of China. With adequate irrigation, the extent of the reduction in yield of China’s corn and wheat can be improved by 5 % to 15 %, and rice by 5 % or so than the potential yield in 1961–1990. Adaptive measures can reduce the agricultural loss under climate change. If effective measures are taken in a timely way, then climate change in the next 30–50 years will not have a significant influence on China’s food security.  相似文献   

19.
The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate.By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data,and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early 1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global warming, the changing climate condition(increasing precipitation and significant rising temperature) might be the potential contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau.  相似文献   

20.
基于MODIS影像的西藏典型内陆湖泊变化研究及成因分析   总被引:4,自引:1,他引:3  
根据2002-2009年的MODIS卫星遥感数据和2000-2009年的气温、地表温度、降水量、相对湿度等气象资料分析得出,2002-2009年西藏典型湖泊面积变化显著:位于西藏藏北地区的色林错、当热雍错、扎日南木错湖泊面积呈扩大趋势,在8 a内分别增长了241.97 km2、12.8 km2、11.69 km2;位于...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号