首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The troposphere delay is an important source of error for precise GNSS positioning due to its high correlation with the station height parameter. It has been demonstrated that errors in mapping functions can cause sub-annual biases as well as affect the repeatability of GNSS solutions, which is a particular concern for geophysical studies. Three-dimensional ray-tracing through numerical weather models (NWM) is an excellent approach for capturing the directional and daily variation of the tropospheric delay. Due to computational complexity, its use for positioning purposes is limited, but it is an excellent tool for evaluating current state-of-the-art mapping functions used for geodetic positioning. Many mapping functions have been recommended in the past such as the Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and the Global Mapping Function (GMF), which have been adopted by most IGS analysis centers. A new Global Pressure Temperature model (GPT2) has also been developed, which has been shown to improve upon the original atmospheric model used for the GMF. Although the mapping functions mentioned above use the same functional formulation, they vary in terms of their atmospheric source and calibration approach. A homogeneous data set of three-dimensional ray-traced delays is used to evaluate all components of the mapping functions, including their underlying functional formulation, calibration, and compression method. Additionally, an alternative representation of the VMF1 is generated using the same atmospheric source as the truth data set to evaluate the differences in ray-tracing methods and their effect on the end mapping function. The results of this investigation continue to support the use of the VMF1 as the mapping function of choice when geodetic parameters are of interest. Further support for the GPT2 and GMF as reliable back-ups when the VMF1 is not available was found due to their high consistency with the NWM-derived mapping function. Additionally, a small latitude-dependent bias in station height was found in the current mapping functions. This bias was identified to be due to the assumption of a constant radius of the earth and was largest at the poles and at the equator. Finally, an alternative version of the VMF1 is introduced, namely the UNB-VMF1 which provides users with an independent NWM-derived mapping function to support geodetic positioning.  相似文献   

2.
The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays’ and elevations’ mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.  相似文献   

3.
大气折射延迟映射函数的比较   总被引:1,自引:0,他引:1  
简要综述对流层大气折射延迟的基本概念,对几种常用的连分式的映射函数进行比较,结果表明映射函数模型在低高度角呈现较大的差异性,说明利用映射函数模型对大气折射进行改正有很多局限性。  相似文献   

4.
Atmospheric loading corrections at the observation level in VLBI analysis   总被引:3,自引:3,他引:0  
This paper investigates whether in very long baseline interferometry (VLBI) analysis atmospheric loading corrections should be applied a priori at the observation level or whether it is sufficient to correct for atmospheric loading effects a posteriori by adding constant values per session to the estimated station coordinates. Simulated observations at single stations corresponding to the precise point positioning approach of global navigation satellite systems show that the atmospheric loading effect can be fully recovered by a posteriori corrections, i.e., the height differences between both approaches stay well below 1 mm. However, real global VLBI network solutions with sessions from 1984 to 2008 reveal that the effect of neglected atmospheric loading corrections at the stations is distributed to the other stations in the network, thus resulting in station height differences between solutions with observation level and with a posteriori corrections which can be as large as 10 mm and a ‘damping’ effect of the corrections. As soon as the terrestrial reference frame and the corresponding coordinate time series are determined, it would be conceptually wrong to apply atmospheric loading corrections at the VLBI stations. We recommend the rigorous application of atmospheric loading corrections at the observation level to all stations of a VLBI network because the seven parameters for translation, rotation, and in particular the network-scale of VLBI networks are significantly affected.  相似文献   

5.
This paper concentrates on the analysis of a real-time meteorological (MET)-based troposphere (RMT) model where MET data are used in real-time to provide troposphere error corrections with a bounded level of integrity for a prototype National Differential Global Positioning System-High Performance (NDGPS-HP) architecture. Toward this goal, three aspects are studied for this approach: sensitivity analysis, accuracy assessment, and integrity analysis. A Hopfield zenith delay and Chao mapping function models were chosen as a good compromise between accuracy and complexity in the integrity analysis. The sensitivity analysis results indicate that the Hopfield model is mostly sensitive to hot humid conditions, which is compounded slightly more and where some relative humidity sensors are less accurate. The accuracy assessment was performed with respect to both absolute and relative accuracy. In the absolute accuracy assessment, the comparison was made in terms of zenith troposphere delay estimation error, with respect to the International GPS Service (IGS) final troposphere zenith path delay (ZPD) product, which was used as the true ZPD. For locations where IGS stations are not available, a relative accuracy assessment was performed whereby comparisons were made in terms of GPS double difference (DD) carrier-phase troposphere correction residuals using various techniques. The accuracy assessment results indicate that the RMT has insignificant differences from the prototype National Oceanic and Atmosphere Administration (NOAA) troposphere error forecast model. An integrity analysis was performed, which presents integrity bounds for the RMT that can be applied to a NDGPS-HP architecture in which integrity requirements exist. The overriding goal of this effort was to establish a preliminary real-time troposphere error estimation model, with defined levels of integrity in its troposphere error estimation that can be included in an NDGPS-HP architecture, where integrity is a key system requirement. The conclusion is drawn that the RMT model may be well suited for a variety of users within a NDGPS-HP architecture. An erratum to this article can be found at  相似文献   

6.
Troposphere parameters estimated from space-geodetic techniques, like the Global Positioning System (GPS) or Very Long Baseline Interferometry (VLBI), can be used to monitor the atmospheric water vapor content. Although the troposphere can only be monitored at discrete locations, the distribution of the instruments, at least the GPS antennas, can be assumed to be quasi-global. Critical in the data analysis are systematic effects within each single technique that significantly degrade the accuracy and especially the long-term stability of the zenith delay determination. In this paper, consistent time-series of troposphere zenith delays and gradients from homogeneously reprocessed GPS and VLBI solutions are compared for a time period of 11 years. The homogeneity of these completely reprocessed time-series is essential to avoid misinterpretations due to individual model changes. Co-located sites are used to investigate systematic effects and the long-term behavior of the two space-geodetic techniques. Both techniques show common signals in the troposphere parameters at a very high level of precision. The biases between the troposphere zenith delays are at the level of a few millimeters. On the other hand, long-term trends significantly differ for the two techniques, preventing climatological interpretations at present. Tests assume these differences to be due to mathematical artifacts such as different sampling rates and unmodeled semi-annual signals with varying amplitudes.  相似文献   

7.
VLBI-derived troposphere parameters during CONT08   总被引:2,自引:2,他引:0  
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12?C26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6?mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3?mm (unweighted), 4.4?mm (diagonal), 8.6?mm [variance component (VC) estimation], and 8.6?mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.  相似文献   

8.
This paper compares estimates of station coordinates from global GPS solutions obtained by applying different troposphere models: the Global Mapping Function (GMF) and the Vienna Mapping Function 1 (VMF1) as well as a priori hydrostatic zenith delays derived from the Global Pressure and Temperature (GPT) model and from the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical weather model data. The station height differences between terrestrial reference frames computed with GMF/GPT and with VMF1/ECMWF are in general below 1 mm, and the horizontal differences are even smaller. The differences of annual amplitudes in the station height can also reach up to 1 mm. Modeling hydrostatic zenith delays with mean (or slowly varying empirical) pressure values instead of the true pressure values results in a partial compensation of atmospheric loading. Therefore, station height time series based on the simple GPT model have a better repeatability than those based on more realistic ECMWF troposphere a priori delays if atmospheric loading corrections are not included. On the other hand, a priori delays from numerical weather models are essential to reveal the full atmospheric loading signal.  相似文献   

9.
The very long baseline interferometry (VLBI) Intensive sessions are typically 1-h and single-baseline VLBI sessions, specifically designed to yield low-latency estimates of UT1-UTC. In this work, we investigate what accuracy is obtained from these sessions and how it can be improved. In particular, we study the modeling of the troposphere in the data analysis. The impact of including external information on the zenith wet delays (ZWD) and tropospheric gradients from GPS or numerical weather prediction models is studied. Additionally, we test estimating tropospheric gradients in the data analysis, which is normally not done. To evaluate the results, we compared the UT1-UTC values from the Intensives to those from simultaneous 24-h VLBI session. Furthermore, we calculated length of day (LOD) estimates using the UT1-UTC values from consecutive Intensives and compared these to the LOD estimated by GPS. We find that there is not much benefit in using external ZWD; however, including external information on the gradients improves the agreement with the reference data. If gradients are estimated in the data analysis, and appropriate constraints are applied, the WRMS difference w.r.t. UT1-UTC from 24-h sessions is reduced by 5% and the WRMS difference w.r.t. the LOD from GPS by up to 12%. The best agreement between Intensives and the reference time series is obtained when using both external gradients from GPS and additionally estimating gradients in the data analysis.  相似文献   

10.
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489–20502, 1997.  https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.  https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.  相似文献   

11.
Ray-tracing is used to examine the accuracy of several well known models for tropospheric delay prediction under varying atmospheric conditions. The models considered include the Hopfield zenith delay model and related mapping functions, the Saastamoinen zenith delay model and mapping function, and three empirical mapping functions based upon the Marini continued fraction form. Modelled delays are benchmarked against ray-tracing solutions for representative atmospheric profiles at various latitudes and seasons. Numerical results are presented in light of the approximations inherent in model formulation. The effect of approximations to the temperature, pressure and humidity structure of the neutral atmosphere are considered; the impact of surface layer anomalies (i.e., inversions) on prediction accuracy is examined; and errors resulting from the neglect of ray bending are illustrated. The influence of surface meteorological parameter measurement error is examined. Finally, model adaptability to local conditions is considered. Recommendations concerning the suitability of the models for GPS relative positioning and their optimal application are made based upon the results presented.  相似文献   

12.
Modeling path delays in the neutral atmosphere for the analysis of Very Long Baseline Interferometry (VLBI) observations has been improved significantly in recent years by the use of elevation-dependent mapping functions based on data from numerical weather models. In this paper, we present a fast way of extracting both, hydrostatic and wet, linear horizontal gradients for the troposphere from data of the European Centre for Medium-range Weather Forecasts (ECMWF) model, as it is realized at the Vienna University of Technology on a routine basis for all stations of the International GNSS (Global Navigation Satellite Systems) Service (IGS) and International VLBI Service for Geodesy and Astrometry (IVS) stations. This approach only uses information about the refractivity gradients at the site vertical, but no information from the line-of-sight. VLBI analysis of the CONT02 and CONT05 campaigns, as well as all IVS-R1 and IVS-R4 sessions in the first half of 2006, shows that fixing these a priori gradients improves the repeatability for 74% (40 out of 54) of the VLBI baseline lengths compared to fixing zero or constant a priori gradients, and improves the repeatability for the majority of baselines compared to estimating 24-h offsets for the gradients. Only if 6-h offsets are estimated, the baseline length repeatabilities significantly improve, no matter which a priori gradients are used.  相似文献   

13.
依据四川省内GPS数据研究垂直分层方法对层析结果的影响及大气水汽随着高程变化的特点,提出一种垂直不均匀分层方法。与垂直均匀分层进行对比实验,不均匀分层的层析结果与探空水汽结果更吻合。由于水汽主要集中在对流层中低层,对流层低层的垂直分辨率相对较高,采用垂直不均匀分层方法得到的大气水汽的变化特征更加细致。考虑到水汽分布的不均匀特点,认为垂直不均匀分层更符合大气水汽的实际分布。四川地区的水汽层析实验研究结果表明文中提出的垂直不均匀分层方法可行且有效。  相似文献   

14.
大气传播延迟是空间大地测量技术的主要误差源之一。在射电波段中性大气延迟的影响可从几米到几十米变化 ,即使通过目前某些模型的修正 ,也不能完全消除大气的影响 ,特别是湿大气部分由于变化随机性强 ,很难用模型估计。本文研究了在球对称大气模式下 ,与余误差函数形式相联系的中性大气折射延迟的母函数 ,讨论了与其有关的一些展开式 ,并对各种映射函数进行了比较。  相似文献   

15.
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.  相似文献   

16.
Because atmospheric effects can have a significant impact on the data obtained from multi-spectral satellite remote sensing, it is frequently necessary to make corrections before any other image processing can be started. This paper describes a robust and relatively simple atmospheric correction method that uses pseudo-invariant targets (PITs) in conjunction with the empirical line method. The method is based on the selection of a number of suitable generic PITs, on the basis that they are large, distinctive in shape, and occur in many geographical areas. Whereas the multi-temporal normalization method corrects all images to a selected reference image, in this method images are simultaneously corrected using targets with a range of estimated surface reflectance values. The paper describes some applications of the method for a range of environmental studies involving water quality and air pollution monitoring, and mapping land-cover changes.  相似文献   

17.
中性大气折射的映射函数   总被引:17,自引:2,他引:17  
严豪健  陈义 《测绘学报》1996,25(1):67-72
在球对称大气模型下,我们导出了与余误差函数形式相联系的中性大气折射改正的母函数,并进一步讨论了它的几种数学展开形式。由此方法建立的映射函数可以对各类大气模型直接进行参数拟合。  相似文献   

18.
Differential GPS is able to provide cm-level positioning accuracies, as long as the carrier phase ambiguities are resolved to integer values. Classical methods are based on the use of a single reference station located in the vicinity of the rover. Due to the spatial decorrelation of the errors, the distance between the reference station and the user is generally limited to within 20–30 km or even less, mainly due to the ionosphere. The MultiRef method, developed at the University of Calgary, uses a network of reference stations to generate regional code and carrier phase corrections, which can be transmitted to users in order to increase the distance over which integer ambiguity resolution is possible. In the original method, the correlated errors, due to the satellite orbits, troposphere, and ionosphere are modeled together using the L1 and wide-lane observables.In this paper, extensive efforts were carried out towards optimizing the MultiRef method with the objective of maximizing its performance. Data collected in southeastern Brazil was used in this research. At first, the impact of using covariance functions calculated with different data sets was assessed, showing improvement variations of up to 14% in the observation domain compared to using no network corrections, with the exact improvement depending on the data set used in the computation. A new approach, also using least-squares prediction (collocation), was then proposed to separately model the correlated errors. An additional effort was carried out in terms of modeling the ionosphere into directional components. Results of the enhanced method showed the same level of improvement as those obtained using the original covariance functions. However, this new approach has advantages with respect to the transmission of the corrections. Finally, an additional step was taken in terms of applying a Kalman filter to the corrections in order to improve their quality. For cases when the corresponding satellite was setting at low elevations, the filter approach improved results up to 44%. A study on the impact of the various covariance functions on the estimated accuracy of the corrections is also included.  相似文献   

19.
大气辐射传输模型及MODTRAN中透过率计算   总被引:14,自引:0,他引:14  
在用遥感影像反演地面参数时,即使天气晴朗,也要受大气、气溶胶、云的影响。因此大气校正成为提高反演精度的主要因素之一,文中在介绍大气传输的概念模型的基础上,对遥感影像的大气校正方程和参数做了介绍,同时介绍了怎样用MODTRAN获取这些参数,并做了具体分析  相似文献   

20.
Precise GPS positioning requires the processing of carrier-phase observations and fixing integer ambiguities. With increasing distance between receivers, ambiguity fixing becomes more difficult because ionospheric and tropospheric effects do not cancel sufficiently in double differencing. A popular procedure in static positioning is to increase the length of the observing session and/or to apply atmospheric (ionospheric) models and corrections. We investigate the methodology for GPS rapid static positioning that requires just a few minutes of dual-frequency GPS observations for medium-length baselines. Ionospheric corrections are not required, but the ionospheric delays are treated as pseudo-observations having a priori values and respective weights. The tropospheric delays are reduced by using well-established troposphere models, and satellite orbital and clock errors are eliminated by using IGS rapid products. Several numerical tests based on actual GPS data are presented. It is shown that the proposed methodology is suitable for rapid static positioning within 50–70 km from the closest reference network station and that centimeter-level precision in positioning is feasible when using just 1 min of dual-frequency GPS data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号