首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
基于原子干涉测量技术的卫星重力梯度测量   总被引:3,自引:0,他引:3  
原子干涉测量技术的发展促进了重力梯度仪技术的发展,使得在测量地球重力场方面有了新的方法,从而能够获得更高分辨率和精度的重力场信息。介绍原子干涉测量技术的基本原理和发展现状,对利用原子干涉重力梯度仪进行卫星重力测量的优势和可行性进行分析。  相似文献   

2.
GOCE采用的高低卫-卫跟踪和卫星重力梯度测量技术在恢复重力场方面各有所长并互为补充,如何有效利用这两类观测数据最优确定地球重力场是GOCE重力场反演的关键问题。本文研究了联合高低卫-卫跟踪和卫星重力梯度数据恢复地球重力场的最小二乘谱组合法,基于球谐分析方法推导并建立了卫星轨道面扰动位T和径向重力梯度Tzz、以及扰动位T和重力梯度分量组合{Tzz-Txx-Tyy}的谱组合计算模型与误差估计公式。数值模拟结果表明,谱组合计算模型可以有效顾及各类数据的精度和频谱特性进行最优联合求解。采用61天GOCE实测数据反演的两个180阶次地球重力场模型WHU_GOCE_SC01S(扰动位和径向重力梯度数据求解)和WHU_GOCE_SC02S(扰动位和重力梯度分量组合数据求解),结果显示后者精度优于前者,并且它们的整体精度优于GOCE时域解,而与GOCE空域解的精度接近,验证了谱组合法的可行性与有效性。  相似文献   

3.
基于Fortran语言编写了一套恢复重力场模型的软件系统实现GOCE卫星。基于傅里叶展开式设计了一种重力梯度的滤波方法。分别对GOCE PKI轨道数据和引力梯度数据进行了反演计算,恢复了几个重力场模型。结果显示,GOCE轨道的反演能力约在120阶次以内;两极空白对梯度数据反演计算的影响大于轨道数据。联合2009-11-02~2010-01-10共70d的GOCE轨道数据和重力梯度数据恢复了一个200阶次的地球重力场模型SWJTU2013GO,通过内外符合精度评定,判定了该模型的整体精度略低于ICGEM公布的同类型模型GO_CONS_GCF_2_TIM_R3。  相似文献   

4.
国际卫星重力梯度测量计划研究进展   总被引:12,自引:2,他引:10  
本文首先阐述了重力梯度测量原理、从20世纪初到21世纪初重力梯度仪的研究历程、卫星重力梯度仪(静电悬浮重力梯度仪、超导重力梯度仪和量子重力梯度仪)的技术特征以及卫星重力梯度测量的特点;其次,介绍了基于卫星重力梯度技术恢复250阶GOCE地球重力场以及论证首先开展一维径向重力梯度仪的研制进而恢复高精度和高空间解析度中高频地球重力场可行性方面的研究进展;最后,建议我国尽早开展基于时空域混合法解算中高频地球重力场和卫星重力梯度测量系统误差分析的预先研究。  相似文献   

5.
利用GOCE卫星轨道反演地球重力场模型   总被引:1,自引:1,他引:0  
根据积分方程法反演地球重力场的数学模型,利用GOCE卫星2009-11-02~2010-01-02共61d的精密轨道数据反演了几组地球重力场模型。结果表明,GOCE卫星轨道能有效提取地球重力场的长波信息,弥补了GOCE卫星重力梯度带宽的限制,在106阶次的大地水准面误差为±9.6cm,该阶次精度优于EIGEN-CHAMP03S及GRACE卫星两个月轨道反演地球重力场的精度,但由于两极空白,反演的带谐位系数精度偏低。联合GOCE及GRACE卫星轨道反演的模型在106阶次的大地水准面误差为±6.9cm,弥补了GOCE卫星轨道的缺陷。  相似文献   

6.
不同于当前广泛使用的空域法、时域法、直接解法,本文尝试采用Torus方法处理GOCE实测数据,利用71 d的GOCE卫星引力梯度数据反演了200阶次GOCE地球重力场模型,实现了对参考模型的精化。首先,采用Butterworth零相移滤波方法加移去—恢复技术,处理引力梯度观测值中的有色噪声,并利用泰勒级数展开和Kriging方法对GOCE卫星引力梯度数据进行归算和格网化,计算得到了名义轨道上格网点处的引力梯度数据。然后,利用2D-FFT技术和块对角最小二乘方法处理名义轨道上数据,获得了200阶次的GOCE地球重力场模型GOCE_Torus。利用中国和美国的GPS/水准数据进行外部检核结果说明,GOCE_Torus与ESA发布的同期模型的精度相当;GOCE_Torus模型与200阶次的EGM2008模型相比,在美国区域精度相当,但在中国区域精度提高了4.6 cm,这充分体现了GOCE卫星观测数据对地面重力稀疏区的贡献。Torus方法拥有快速高精度反演卫星重力场模型的优势,可以在重力梯度卫星的设计、误差分析及在轨快速评估等方面得到充分应用。  相似文献   

7.
在地球重力场和海洋环流探测卫星GOCE(Gravity field and Ocean Circulation Explorer)的观测数据中,其主要的观测量重力梯度数据不仅与搭载的6个加速度计的测量值有关,而且还与卫星自身的自转角速度存在着二次函数关系.由于加速度计测量频段的限制,这样就导致了卫星姿态的低频误差混入到测量频段内的重力梯度数据之中.为了客观地分析姿态误差对重力梯度精度的影响程度,本文论述了如何利用以四元数形式给出的姿态数据来计算自转角速度,并针对GOCE的实际姿态误差情况通过数据模拟分析了姿态误差对重力梯度测量精度的影响,得到了下列结论:若卫星姿态的误差是5〃,则对重力梯度精度的影响最大可达5.7 mEd;若重力梯度的精度指标是1 mEd,那么GOCE姿态的误差不能超过1〃.  相似文献   

8.
GOCE卫星重力梯度观测值为高阶静态重力场反演提供了重要的数据支撑,但其在使用前需考虑扣除时变重力场变化的影响.本文研究了GOCE卫星重力梯度观测值的时变重力场变化改正方法,更新了ESA标准和背景模型,以更好地扣除时变重力场变化的影响,自主实现了由GOCE卫星Level1b重力梯度数据直接进行重力场反演.本文通过3种时变重力场变化改正方案分析了其对高阶静态重力场反演的影响,研究结果表明:从全球大地水准面差异看,时变重力场变化改正对重力场反演是有影响的,其在局部区域对大地水准面的影响值最大可超过1 cm,说明利用GOCE卫星重力梯度数据反演高阶静态重力场时需扣除时变重力场变化改正,同时新标准和背景模型更有利于扣除时变重力场变化的影响.  相似文献   

9.
重力梯度仪校准参数的确定是GOCE重力梯度观测数据处理的关键环节。本文对GOCE卫星重力梯度观测值中的时变信号与粗差进行了分析,利用高精度全球重力场模型,确定了GOCE重力梯度观测值各分量的尺度因子与偏差,并对校准结果进行了精度评定。结果表明,在测量带宽内,海潮对重力梯度观测值影响在mE量级,与重力梯度仪的精度水平相当,陆地水等非潮汐重力场时变信号略小于海潮,量级约为10~(-4)E;各分量重力梯度观测值的粗差比例均大于0.2%;除EGM96模型外的其他模型对GOCE重力梯度仪进行校准后,Vxx、Vyy、Vzz、Vyz分量上尺度因子的稳定性均在10~(-4)量级,Vxz分量能达到10~(-5)量级,Vxy分量为10~(-2)量级,这与梯度观测值各分量的精度水平一致。  相似文献   

10.
利用卫星跟踪卫星和卫星重力梯度测量技术来测定全球重力场,是近几年重力场测量领域的一个发展重点。由这些卫星上的各种数据获得的地球重力场模型在精度和分辨率上都得到了很大程度上的提高。本文首先以CHAMP、GRACE、GOCE三颗卫星为例,介绍了当前卫星重力测量的主要方法、原则,对三颗卫星的特点进行了说明。同时对三颗卫星的组成部分、轨道参数、应用领域进行了介绍。对于由CHAMP、GRACE卫星数据生成的重力场模型,文中进行了分析、评价和比较。  相似文献   

11.
利用GOCE模拟观测反演重力场的Torus法   总被引:1,自引:1,他引:0  
在介绍Torus方法反演地球重力场模型的基本原理和方法的基础上,基于圆环面上均匀分布的卫星引力梯度模拟观测值解算了200阶次的地球重力场模型,在无误差情况下,Torus方法解算模型的阶误差RMS小于10-16,验证了该方法的严密性。利用61dGOCE卫星轨道上无误差的模拟引力梯度观测值解算了200阶次的地球重力场模型,分析了格网化误差、极空白对解算精度的影响,迭代3次后,在不考虑低次系数情况下,模型的大地水准面阶误差和累积误差均较小,最大值仅为0.022mm和0.099mm。在沿轨卫星引力梯度模拟数据中加入5mE/Hz1/2的白噪声,基于Torus方法和空域最小二乘法解算了200阶次的地球重力场模型,Torus方法的精度略低于空域最小二乘法的精度,在不考虑低次项的情况下,两种方法解算模型的大地水准面阶误差最大值分别为1.58cm和1.45cm,累积误差最大值分别为6.37cm和5.55cm。但由于采用了二维快速傅里叶技术和块对角最小二乘法,极大地提高了计算效率。本文数值结果说明Torus方法是一种独立有效的方法,可用于GOCE任务海量卫星引力梯度观测值反演重力场的快速解算。  相似文献   

12.
The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users.  相似文献   

13.
2009年GOCE卫星升空以后,卫星重力梯度数据参与解算的GOCE系列重力场模型已有多家研究机构相继公布。本文分别采用青藏地区的GPS/水准和重力异常实测数据对GOCE重力场模型进行了外部测试,并在重力异常验证过程中引入了一种新的滤波方法,验证结果表明在青藏地区GOCE重力场模型相比其它系列模型的优势在于中波段。同时,探讨了GOCE重力场模型与其他系列模型在青藏地区主要差异值的空间分布以及首次利用统计分析方法找出模型之间主要差异值的阶次分布,得出如下结论:模型之间的较大差异值在空间水平方向上主要分布在喜马拉雅山脉、天山等地形起伏较大的区域,在垂直方向上主要集中在岩石圈。  相似文献   

14.
First GOCE gravity field models derived by three different approaches   总被引:28,自引:10,他引:18  
Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10?cm in terms of geoid heights, and 3?mGal in terms of gravity anomalies, globally at a resolution of 100?km (degree/order 200).  相似文献   

15.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:2,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   

16.
本文介绍了基于国际探月观测数据建立的月球重力场模型:8×4、15×8、13×13、5×5、7×7、16×16-1/2/3、Lun60d、GLGM-1/2、LP75D/G、LP100K/J、LP165P、LP150Q和SGM90d;通过对比SST-HL/LL-Doppler-VLBI和SST-HL/SGG-Doppler-VLBI跟踪观测模式的优缺点,建议我国将来首期月球卫星重力测量计划采用SST-HL/SGG-Doppler-VLBI较优;其次,通过对比静电悬浮、超导和量子卫星重力梯度仪的优缺点,建议我国将来首期月球卫星重力梯度计划采用静电悬浮重力梯度仪;并建议我国将来首颗月球重力梯度卫星的轨道高度(50~100 km)选择在已有月球探测卫星的测量盲区,轨道倾角(90°±3°)设计为有利于月球卫星观测数据全球覆盖的近极轨模式。  相似文献   

17.
Topographic–isostatic masses represent an important source of gravity field information, especially in the high-frequency band, even if the detailed mass-density distribution inside the topographic masses is unknown. If this information is used within a remove-restore procedure, then the instability problems in downward continuation of gravity observations from aircraft or satellite altitudes can be reduced. In this article, integral formulae are derived for determination of gravitational effects of topographic–isostatic masses on the first- and second-order derivatives of the gravitational potential for three topographic–isostatic models. The application of these formulas is useful for airborne gravimetry/gradiometry and satellite gravity gradiometry. The formulas are presented in spherical approximation by separating the 3D integration in an analytical integration in the radial direction and 2D integration over the mean sphere. Therefore, spherical volume elements can be considered as being approximated by mass-lines located at the centre of the discretization compartments (the mass of the tesseroid is condensed mathematically along its vertical axis). The errors of this approximation are investigated for the second-order derivatives of the topographic–isostatic gravitational potential in the vicinity of the Earth’s surface. The formulas are then applied to various scenarios of airborne gravimetry/gradiometry and satellite gradiometry. The components of the gravitational vector at aircraft altitudes of 4 and 10 km have been determined, as well as the gravitational tensor components at a satellite altitude of 250 km envisaged for the forthcoming GOCE (gravity field and steady-state ocean-circulation explorer) mission. The numerical computations are based on digital elevation models with a 5-arc-minute resolution for satellite gravity gradiometry and 1-arc-minute resolution for airborne gravity/gradiometry.  相似文献   

18.
本文利用简捷的球谐分析方法讨论了重力场元在地面和空间的谱分布特征和向下延拓问题,分析了各类测量数据求定重力场的最高分辨率及精度。结果表明,在一个低轨道卫星上以适当的精度(优于10~(-2)E)的重力梯度测量可以获得空间分辨率为100公里、精度高于5mgal和10cm的重力场和大地水准面。  相似文献   

19.
R. Pail 《Journal of Geodesy》2005,79(4-5):231-241
In the recent design of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission, the gravity gradients are defined in the gradiometer reference frame (GRF), which deviates from the actual flight direction (local orbit reference frame, LORF) by up to 3–4°. The main objective of this paper is to investigate the effect of uncertainties in the knowledge of the gradiometer orientation due to attitude reconstitution errors on the gravity field solution. In the framework of several numerical simulations, which are based on a realistic mission configuration, different scenarios are investigated, to provide the accuracy requirements of the orientation information. It turns out that orientation errors have to be seriously considered, because they may represent a significant error component of the gravity field solution. While in a realistic mission scenario (colored gradiometer noise) the gravity field solutions are quite insensitive to small orientation biases, random noise applied to the attitude information can have a considerable impact on the accuracy of the resolved gravity field models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号