首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximum momentum of particles accelerated at cosmic ray modified shocks   总被引:1,自引:0,他引:1  
Particle acceleration at non-relativistic shocks can be very efficient, leading to the appearance of non-linear effects due to the dynamical reaction of the accelerated particles on the shock structure and to the non-linear amplification of the magnetic field in the shock vicinity. The value of the maximum momentum, p max, in these circumstances cannot be estimated using the classical results obtained within the framework of test-particle approaches. We provide here the first attempt at estimating p max in the cosmic ray modified regime, taking into account the non-linear effects mentioned above.  相似文献   

2.
《Astroparticle Physics》2011,34(5-6):307-311
We present here a semi-analytical solution of the problem of particle acceleration at non-linear shock waves with a free-escape boundary at some location upstream. This solution, besides allowing us to determine the spectrum of particles accelerated at the shock front, including the shape of the cutoff at some maximum momentum, also allows us to determine the spectrum of particles escaping the system from upstream. This latter aspect of the problem is crucial for establishing a connection between the accelerated particles in astrophysical sources, such as supernova remnants, and the cosmic rays observed at the Earth. An excellent approximate solution, which leads to a computationally fast calculation of the structure of shocks with an arbitrary level of cosmic ray modification, is also obtained.  相似文献   

3.
We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes the magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. The approach is specialized to parallel shock waves, and the parameters we chose are the ones appropriate to forward shocks in supernova remnants. Our calculation allows us to show that the net effect of the amplified magnetic field is to enhance the maximum momentum of accelerated particles while reducing the concavity of the spectra, with respect to the standard predictions of NLDSA. This is mainly due to the dynamical reaction of the amplified field on the shock, which notably reduces the modification of the shock precursor. The total compression factors which are obtained for parameters typical of supernova remnants are   R tot∼ 7–10  , in good agreement with the values inferred from observations. The strength of the magnetic field produced through excitation of streaming instability is found in good agreement with the values inferred for several remnants if the thickness of the X-ray rims is interpreted as due to severe synchrotron losses of high-energy electrons. We also discuss the relative role of turbulent heating and magnetic dynamical reaction in driving the reduction of the precursor modification.  相似文献   

4.
One-, two- and three-dimensional numerical results of the non-linear interaction between cosmic rays and a magnetic field are presented. These show that cosmic ray streaming drives large-amplitude Alfvénic waves. The cosmic ray streaming energy is very efficiently transferred to the perturbed magnetic field of the Alfvén waves, and the non-linear time-scale of the growth of the waves is found to be very rapid, of the order of the gyro-period of the cosmic ray. Thus, a magnetic field of interstellar values, assumed in models of supernova remnant blast wave acceleration, would not be appropriate in the region of the shock. The increased magnetic field reduces the cosmic ray acceleration time and so increases the maximum cosmic ray energy, which may provide a simple and elegant resolution to the highest energy Galactic cosmic ray problem, where the cosmic rays themselves provide the fields necessary for their acceleration.  相似文献   

5.
The maximum energy for cosmic ray acceleration at supernova shock fronts is usually thought to be limited to around 1014–1015 eV by the size of the shock and the time for which it propagates at high velocity. We show that the magnetic field can be amplified non-linearly by the cosmic rays to many times the pre-shock value, thus increasing the acceleration rate and facilitating acceleration to energies well above 1015 eV. A supernova remnant expanding into a uniform circumstellar medium may accelerate protons to 1017 eV and heavy ions, with charge Ze , to Z ×1017 eV. Expansion into a pre-existing stellar wind may increase the maximum cosmic ray energy by a further factor of 10.  相似文献   

6.
One dimensional numerical results of the non-linear interaction between cosmic rays and a magnetic field are presented. These show that cosmic ray streaming drives large amplitude Alfvénic waves. The cosmic ray streaming energy is very efficiently transfered to the perturbed magnetic field of the Alfvén waves. Thus a magnetic field of interstellar values, assumed in models of supernova remnant blast wave acceleration, would not be appropriate in the region of the shock. The increased magnetic field reduces the acceleration time and so increases the maximum cosmic ray energy, which may provide a simple and elegant resolution to the highest energy galactic cosmic ray problem were the cosmic rays themselves provide the fields necessary for their acceleration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The origin of cosmic rays is one of the key questions in high-energy astrophysics. Supernovae have been always considered as the dominant sources of cosmic rays below the energy spectrum knee. Multi-wavelength observations indeed show that supernova remnants are capable for accelerating particles into sub-PeV (1015 eV) energies. Diffusive shock acceleration is considered as one of the most efficient acceleration mechanisms of astrophysical high-energy particles, which may just operate effectively in the large-scale shocks of supernova remnants. Recently, a series of high-precision ground and space experiments have greatly promoted the study of cosmic rays and supernova remnants. New observational features challenge the classical acceleration model by diffusive shock and the application to the scenario of supernova remnants for the origin of Galactic cosmic rays, and have deepened our understanding to the cosmic high-energy phenomena. In combination with the time evolution of radiation energy spectrum of supernova remnants, a time-dependent particle acceleration model is established, which can not only explain the anomalies in cosmic-ray distributions around 200 GV, but also naturally form the cosmic-ray spectrum knee, even extend the contribution of supernova particle acceleration to cosmic ray flux up to the spectrum ankle. This model predicts that the high-energy particle transport behavior is dominated by the turbulent convection, which needs to be verified by future observations and plasma numerical simulations relevant to the particle transport.  相似文献   

8.
宇宙线的起源是高能天体物理的核心问题之一.一直以来,超新星爆发被认为是能谱膝区以下宇宙线的主要来源.多波段观测表明,超新星遗迹有能力加速带电粒子至亚PeV (10~(15)eV)能量.扩散激波加速被认为是最有效的天体高能粒子加速机制之一,而超新星遗迹的大尺度激波正好为这一机制提供平台.近年来,一系列较高精度的地面和空间实验极大地推动了对宇宙线以及超新星遗迹的研究.新的观测事实挑战着传统的扩散激波加速模型以及其在银河系宇宙线超新星遗迹起源学说上的应用,深化了人们对宇宙高能现象的认识.结合超新星遗迹辐射能谱的时间演化特性,构建的时间依赖的超新星遗迹粒子加速模型,不仅能够解释200 GV附近宇宙线的能谱反常,还自然地形成能谱膝区,甚至可以将超新星遗迹粒子加速对宇宙线能谱的贡献延伸至踝区.该模型预期超新星遗迹中粒子的输运行为表现为湍流扩散,这需要未来的观测以及与粒子输运相关的等离子体数值模拟工作来进一步验证.  相似文献   

9.
A nonlinear model of cosmic-ray acceleration at the shock fronts in the supernova remnants W28, W44, and IC433 is investigated. The hydrodynamic evolution of a supernova remnant, including the shock modification by the pressure of accelerated particles and the streaming instability of particles upstream of the shock propagating in a partially ionized interstellar gas, is modeled. The electromagnetic radiation generated by accelerated particles is calculated and compared with observations in a wide range of photon energies.  相似文献   

10.
The dynamical reaction of the particles accelerated at a shock front by the first-order Fermi process can be determined within kinetic models that account for both the hydrodynamics of the shocked fluid and the transport of the accelerated particles. These models predict the appearance of multiple solutions, all physically allowed. We discuss here the role of injection in selecting the real solution, in the framework of a simple phenomenological recipe, which is a variation of what is sometimes referred to as thermal leakage. In this context we show that multiple solutions basically disappear and when they are present they are limited to rather peculiar values of the parameters. We also provide a quantitative calculation of the efficiency of particle acceleration at cosmic ray modified shocks and we identify the fraction of energy which is advected downstream and that of particles escaping the system from upstream infinity at the maximum momentum. The consequences of efficient particle acceleration for shock heating are also discussed.  相似文献   

11.
We study the emission from an old supernova remnant (SNR) with an age of around 105 yr and that from a giant molecular cloud (GMC) encountered by the SNR. When the SNR age is around 105 yr, proton acceleration is efficient enough to emit TeV γ-rays both at the shock of the SNR and that in the GMC. The maximum energy of primarily accelerated electrons is so small that TeV γ-rays and X-rays are dominated by hadronic processes,  π0  -decay and synchrotron radiation from secondary electrons, respectively. However, if the SNR is older than several 105 yr, there are few high-energy particles emitting TeV γ-rays because of the energy-loss effect and/or the wave-damping effect occurring at low-velocity isothermal shocks. For old SNRs or SNR–GMC interacting systems capable of generating TeV γ-ray emitting particles, we calculated the ratio of TeV γ-ray (1–10 TeV) to X-ray (2–10 keV) energy flux and found that it can be more than  ∼102  . Such a source showing large flux ratio may be a possible origin of recently discovered unidentified TeV sources.  相似文献   

12.
This review describes the basic theory of cosmic ray acceleration by shocks including the plasma instabilities confining cosmic rays near the shock, the effect of the magnetic field orientation, the maximum cosmic ray energy and the shape of the cosmic ray spectrum. Attention is directed mainly towards Galactic cosmic rays accelerated by supernova remnants.  相似文献   

13.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


14.
Shock surfing acceleration   总被引:1,自引:0,他引:1  
Analytical and numerical analysis identify shock surfing acceleration as an ideal pre-energization mechanism for the slow pick-up ions at quasiperpendicular shocks. After gaining sufficient energy by shock surfing, pick-up ions undergo diffusive acceleration to reach their observed energies. Energetic ions upstream of the cometary bow shock, acceleration of solar energetic particles by magnetosonic waves in corona, ion enhancement in interplanetary shocks, generation of anomalous cosmic rays from interstellar pick-up ions at the termination shock are some of the cases where shock surfing acceleration apply. Inclusion of the lower-hybrid wave turbulence into the laminar model of shock surfing can explain the preferential acceleration of heavier particles as observed by Voyager at the termination shock. At relativistic energies, unlimited acceleration of ions is theoretically possible; because for sufficiently strong shocks main limitation of the mechanism, caused by the escape of accelerated particles downstream of the shock during acceleration no longer exists.  相似文献   

15.
One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data.I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy.In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of research has recently experienced a remarkable growth, in that lines have been found to bear information on the cosmic-ray acceleration efficiency of supernova shocks.  相似文献   

16.
Particle acceleration by ultrarelativistic shocks: theory and simulations   总被引:1,自引:0,他引:1  
We consider the acceleration of charged particles near ultrarelativistic shocks, with Lorentz factor     . We present simulations of the acceleration process and compare these with results from semi-analytical calculations. We show that the spectrum that results from acceleration near ultrarelativistic shocks is a power law,     , with a nearly universal value     for the slope of this power law.
We confirm that the ultrarelativistic equivalent of the Fermi acceleration at a shock differs from its non-relativistic counterpart by the occurrence of large anisotropies in the distribution of the accelerated particles near the shock. In the rest frame of the upstream fluid, particles can only outrun the shock when their direction of motion lies within a small loss cone of opening angle     around the shock normal.
We also show that all physically plausible deflection or scattering mechanisms can change the upstream flight direction of relativistic particles originating from downstream by only a small amount:     . This limits the energy change per shock crossing cycle to     , except for the first cycle where particles originate upstream. In that case the upstream energy is boosted by a factor     for those particles that are scattered back across the shock into the upstream region.  相似文献   

17.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

18.
If Type II supernovae – the evolutionary end points of short-lived, massive stars – produce a significant quantity of dust  (>0.1 M)  then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented  ( f pol∼ 30 per cent)  which, coupled with the brief time-scale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where   f pol= 2−7  per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.  相似文献   

19.
We investigate the generation mechanism of long-wavelength Alfvénic disturbances near the front of a collisionless shock that propagates in a partially ionized plasma. The wave generation and dissipation rates are calculated in the linear approximation. The instability is attributable to a current of energetic particles upstream of the shock front. The generation of long-wavelength magnetic fluctuations is most pronounced for strong shocks, but the effect is retained for shocks with a moderate particle acceleration efficiency without any noticeable modification of the shock structure by the pressure of accelerated particles. The mode generation time for supernova remnants in a partially ionized interstellar medium is shown to be shorter than their age. Long-wavelength magnetic disturbances determine the limiting energies of the particles accelerated at a shock by the Fermimechanism. We discuss the application of the mechanism under consideration to explaining the observed properties of the SN 1006 remnant.  相似文献   

20.
Very high energy (VHE) γ‐ray observations have proven to be very successful in localizing Galactic acceleration sites of VHE particles. Observations of shell‐type supernova remnants have confirmed that particles are accelerated to VHE energies in supernova blast waves; the interpretation of the γ‐ray data in terms of hadronic or leptonic particle components in these objects relies nevertheless strongly on input from X‐ray observations. The largest identified Galactic VHE source class consists of pulsar wind nebulae, as detected in X‐rays. Many of the remaining VHE sources remain however unidentified until now. With X‐ray observations of these enigmatic “dark” objects one hopes to solve the following questions: What is the astrophysical nature of these sources? Are they predominantly electron or hadron accelerators? And what is their contribution to the overall cosmic ray energy budget? The paper aims to provide an overview over the identification status of the Galactic VHE source population. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号