首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have substantially increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. We identify regions where substantial rainfall decrease between two periods interrupted by the 1998 El Nino event (1981–2012) in the East African Horn is coupled with human population density increases. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that vegetation degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using AVHRR and MODIS vegetation products from 1981 to 2012, we observe changes in vegetation patterns and productivity over the last decade across the East African Horn. We observe vegetation browning trends in areas experiencing reduced main-growing season precipitation; these areas are also concurrently experiencing increasing population pressures. We also found that the drying precipitation patterns only partially statistically explain the vegetation browning trends, indicating that other factors such as population pressures and land use changes might be responsible for the observed declining vegetation condition. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, pointing to potential long-term degradation of rangelands on which approximately 10 million people depend. These findings may have implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends and increased climatic variability.  相似文献   

2.
We examined if climate change in two dry ecosystems—Mediterranean (DME) and Semiarid (SAE)—would cause substantial reduction in the production of annual vegetation. Field measurements and computer simulations were used to examine the following six climate change scenarios: (1) rainfall amount reduction; (2) increases of 10 % in annual evaporation rate and 5 % in annual temperature; (3) increase in magnitude of rainfall events, accompanied by reductions in frequency and seasonal variation; (4) postponement of the beginning of the first rainfall event of the growing season; (5) long dry spells during the growing season; and (6) early ending of the growing season. The results revealed the following outcomes. a) Reduction by 5–35 % in annual rainfall amount did not significantly affect productivity in the DME, but a large (25–35 %) decrease in rainfall would change vegetation productivity in the SAE and lead to a patchier environment. b) Similar results were observed: when temperature and evaporation rate were increased; when the magnitude of rainfall events increased but their frequency decreased; and during a long mid-season dry spell. c) In both ecosystems, changes in the temporal distribution of rainfall, especially at the beginning of the season, caused the largest reduction in productivity, accompanied by increased patchiness. d) Long-term data gathered during the last three decades indicated that both environments exhibited high resilience of productivity under rainfall variability. These results imply that the response of dry ecosystems to climate change is not characterized by a dramatic decrease in productivity. Moreover, these ecosystems are more resilient than expected, and their herbaceous productivity might undergo drastic changes only under more severe scenarios than those currently predicted in the literature.  相似文献   

3.
Rainfed agriculture in Sub-Saharan Africa accounts for 95 % of the local cereal production, impacting hundreds of millions of people. Early identification of poor rainfall conditions is a critical indicator of food security. As such, monitoring accumulated seasonal rainfall gives an important mid-season estimate of final accumulated totals. However, characterizing the remaining uncertainty in a season has largely been ignored by the food security community. This paper presents a new technique describing rainfall conditions over the duration of a crop-growing cycle by combining estimated rainfall-to-date with potential scenarios for the remaining season based on available satellite rainfall estimates, the common tool for rainfall analysis in Africa. The limited historical record provided by satellite rainfall estimates using previous seasons provides only a coarse view of likely seasonal totals. To combat this, scenarios developed by bootstrapping dekadal data to create synthetic seasons allow for a finer understanding of potential seasonal accumulations. Updating this throughout the season shows a narrowing envelope of seasonal totals, converging on the final seasonal result. The resulting scenarios inform the expectations for the final seasonal rainfall accumulation, allowing analysts to quantify and visualize the uncertainty in seasonal totals. Giving decision makers a tool for understanding the likelihood of specific rainfall amounts provides additional time to enact and mobilize efforts to reduce the impact of agricultural drought.  相似文献   

4.
Global climate change is expected to result in greater variation in snow cover and subsequent impacts on land surface hydrology and vegetation production in the high Trans Himalayan region (THR). This paper examines how the changes in timing and duration of snow cover affect the spatio-temporal pattern of rangeland phenology and production in the region. Moderate Resolution Imaging Spectrometer (MODIS) 16-day normalized difference vegetation index (NDVI) data from 2000 to 2009 and concurrent snow cover, precipitation and temperature data were analyzed. In contrast to numerous studies which have suggested that an earlier start of the season and an extension of the length of the growing season in mid and higher latitude areas due to global warming, this study shows a delay in the beginning of the growing season and the peak time of production, and a decline in the length of growing season in the drier part of THR following a decline and a delay in snow cover. Soil moisture in the beginning of the growing season and consequent rangeland vegetation production in drier areas of the THR was found to be strongly dependent upon the timing and duration of snow cover. However, in the wetter part of the THR, an earlier start of season, a delay in end of season and hence a longer growing season was observed, which could be attributed to warming in winter and early spring and cooling in summer and late spring and changes in timing of snow melt. The study shows a linear positive relationship between rangeland vegetation production and snow cover in the drier parts of THR, a quadratic relationship near to permanent snow line, and a negative linear relationship in wetter highlands. These findings suggest that, while temperature is important, changes in snow cover and precipitation pattern play more important roles in snow-fed, drier regions for rangeland vegetation dynamics.  相似文献   

5.
利用1982~1993年NOAA/NASA PathfinderAVHRR陆地数据集中的NDVI数据集,在中国东部植被生长的不同阶段(全年、植被生长季、植被生长季的增长阶段和衰退阶段),对植被季节生长对气候响应的年际变化进行了分析,发现:(1)无论在多年平均意义上还是逐年来看,中国东部季风区植被季节性生长状况对温度的响应在各个生长阶段都是近于同步的,温度对于植被生长季节变化的驱动关系非常稳定;(2)逐年来看,植被季节性生长对降水的响应也是存在的,但相关关系和相关的滞后关系具有年际差异。通过定量化地分析中国东部植被季节生长对季风气候响应的年际变化,有助于对陆面过程模式中的有关部分进行改进,从而提高对中国东部区域年际气候变化的模拟能力。  相似文献   

6.
Food security exists when people have access to sufficient, safe and nutritious food at all times to meet their dietary needs. The natural resource base is one of the many factors affecting food security. Its variability and decline creates problems for local food production. In this study we characterize for sub-Saharan Africa vegetation phenology and assess variability and trends of phenological indicators based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over the season (cumNDVI) which is a proxy for net primary productivity. Results are aggregated at the level of major farming systems, while determining also spatial variability within farming systems. High temporal variability of cumNDVI occurs in semiarid and subhumid regions. The results show a large area of positive cumNDVI trends between Senegal and South Sudan. These correspond to positive CRU rainfall trends found and relate to recovery after the 1980??s droughts. We find significant negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and in Tanzania. For each farming system, causes of change and variability are discussed based on available literature (Appendix A). Although food security comprises more than the local natural resource base, our results can perform an input for food security analysis by identifying zones of high variability or downward trends. Farming systems are found to be a useful level of analysis. Diversity and trends found within farming system boundaries underline that farming systems are dynamic.  相似文献   

7.
The wheatbelt of Western Australia shows a distinct Mediterranean climate with most of the rainfall occurring in the winter months. The main factor limiting plant production in this region is rainfall. Due to clearing of native vegetation, dryland salinity is a major problem in south-west Australia. Since the mid 1970s the region has experienced a significant decrease in winter rainfall. Across nine sites, growing season rainfall (May to October) decreased by an average of 11% and the sum of rainfall in June and July (June + July) decreased by 20%. We used the ASPIM-Nwheat model in combination with historic climate data to study the impact of recent climate change on the hydrology and production of wheat based farming systems by comparing results for before and after 1975. Despite the large decline in rainfall, simulated yields based on the actual weather data did not fall. At the same time, simulated drainage decreased by up to 95% which will significantly reduce the spread of dryland salinity. These results were due to the rainfall changes mainly occurring in June and July, a period when rainfall often exceeds crop demand and large amounts of water are usually lost by deep drainage. The findings will have significant implications for estimates of future climate change impacts in this region with changes in rainfall causing non-proportional impacts on production and hydrological aspects, such as deep drainage and waterlogging, where proportionality is often presumed.  相似文献   

8.
Agricultural production and household food security are hypothesized to play a critical role connecting climate change to downstream effects on women’s health, especially in communities dependent on rainfed agriculture. Seasonal variability in agriculture strains food and income resources and makes it a challenging time for households to manage a pregnancy or afford a new child. Yet, there are few direct assessments of the role locally varying agricultural quality plays on women’s health, especially reproductive health. In this paper we build on and integrate ideas from past studies focused on climate change and growing season quality in low-income countries with those on reproductive health to examine how variation in local seasonal agricultural quality relates to childbearing goals and family planning use in three countries in sub-Saharan Africa: Burkina Faso, Kenya, and Uganda. We use rich, spatially referenced data from the Performance Monitoring for Action (PMA) individual surveys with detailed information on childbearing preferences and family planning decisions. Building on recent advances in remote monitoring of seasonal agriculture, we construct multiple vegetation measures capturing different dimensions of growing season conditions across varying time frames. Results for the Kenya sample indicate that if the recent growing season is better a woman is more likely to want a child in the future. In Uganda, when the growing season conditions are better, women prefer to shorten the time until their next birth and are also more likely to discontinue using family planning. Additional analyses reveal the importance of education and birth spacing in moderating these findings. Overall, our findings suggest that, in some settings, women strategically respond to growing season conditions by adjusting fertility aspirations or family planning use. This study also highlights the importance of operationalizing agriculture in nuanced ways that align with women’s lives to better understand how women are impacted by and respond to seasonal climate conditions.  相似文献   

9.
该研究是加拿大Saskatchewan Scott农作物轮作系统(ACS)研究的一部分。研究始于1994年,历时18a,评价9个可耕种农作物产量系统的可靠性。由3种处理水平(organic,reduced,high)和3种作物多样性水平(low,diversified annual grains,diversified annual perennials)结合而产生的9个农作物产量系统,被用于监测和评价加拿大牧场不同处理和不同作物种植轮作下可耕种农作物的产量。在2003年生长季共收集了3次叶面积指数和光谱反射率的数据:生长季前期(6月)、生长季旺盛期(7月)、生长季后期(8月)。叶面积指数是由LAI-2000植物冠层分析仪监测的,光谱测量是由覆盖了350-2500 nm波长范围共2215个波段的ADS便携式高光谱仪完成的。结果显示,光学测量可以用于监测农作物生长状况的差异。从生长季的早期到中期,光谱和叶面积指数在不同处理下有显著差异。7月中期是用遥感资料监测农作物长势的最佳季节;红光波段与近红外波段反射率的比值和基于这两个波段构造的归一化植被指数,是检测农作物长势的最佳植被指数。  相似文献   

10.
Despite the strong signal of El Niño/Southern Oscillation (ENSO) events on climate in the Indo-Pacific region, models linking ENSO-based climate variability to seasonal rice production and food security in the region have not been well developed or widely used in a policy context. This study successfully measures the connections among sea surface temperature anomalies (SSTAs), rainfall, and rice production in Indonesia during the past three decades. Regression results show particularly strong connections on Java, where 55% of the country's rice is grown. Two-thirds of the interannual variance in rice plantings and 40% of the interannual variance in rice production during the main (wet) season on Java are explained by year-to-year fluctuations in SSTAs measured 4 and 8 months in advance, respectively. These effects are cumulative; during strong El Niño years, production shortfalls in the wet season are not made up later in the crop year. The analysis demonstrates that quantitative predictions of ENSO's effects on rice harvests can provide an additional tool for managing food security in one of the world's most populous and important rice-producing countries.  相似文献   

11.
Climate change and implications for agriculture in Niger   总被引:1,自引:0,他引:1  
Five-year moving averages of annual rainfall for 21 locations in Niger showed a decline in the annual rainfall after 1960. Correlation coefficients of the moving averages of monthly rainfall with annual rainfall showed significant correlations between the decline in the annual rainfall with decreased rainfall in August. Analysis of daily rainfall data for rainy season parameters of interest to agriculture suggested that from 1965 there was a significant decrease in the amount of rainfall and in the number of rainy days in the months of July and August, resulting in a decreased volume of rainfall for each rainstorm. In comparison to the period 1945–64, major shifts have occurred in the average dates of onset and ending of rains during 1965–88. The length of the growing season was reduced by 5–20 days across different locations in Niger. The standard deviation for the onset and ending of the rains as well as the length of the growing season has increased, implying that cropping has become more risky. Water balance calculations also demonstrated that the probability of rainfall exceeding potential evapotranspiration decreased during the growing season. The implications of these changes for agriculture in Niger are discussed using field data.  相似文献   

12.
A number of general circulation model studies have assessed the impact of degradation of the land surface in the Sahel, mostly with idealized degradation scenarios. This paper builds on the previous research by testing the sensitivity of Mesoscale Convective Systems (MCS) and associated rainfall amounts to observed vegetation changes using a regional atmospheric model. Over the last 20 years, the vegetation in the Sahel has recovered from the drought in the 1980s and vegetation cover values have increased up to 20%. The sensitivity for both a vegetation increase and a decrease by these realistic amounts is investigated. The model simulations span 42 days of the rainy season and are centred over the region of the Hydrological and Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel), of which the data are used to evaluate model results. The model is able to correctly reproduce rainfall amounts and atmospheric profiles. Total precipitation is found to be insensitive to the applied vegetation changes, but the latter do have an impact on the rainfall patterns and the location of MCS. The model results indicate that the change in vegetation cover influences the MCS in two different ways: Firstly, the vegetation change is found to affect the surface fluxes and this in turn is found to affect the Convective Available Potential Energy (CAPE) and thereby the strength of the convective systems. The relation between vegetation cover and CAPE turns out to be affected by the time in-between precipitation events. Secondly, a change in atmospheric dynamics, especially the mid-tropospheric zonal flow, is modelled as response to a change in the spatial temperature and humidity distribution. Both mechanisms are likely to play a role in determining the characteristics of the rainfall pattern.  相似文献   

13.
This study investigates the relationship between violent conflict, food price, and climate variability at the subnational level. Using disaggregated data on 113 African markets from January 1997 to April 2010, interrelationships between the three variables are analyzed in simultaneous equation models. We find that: (i) a positive feedback exists between food price and violence – higher food prices increase conflict rates within markets and conflict increases food prices; (ii) anomalously dry conditions are associated with increased frequencies of conflict; and (iii) decreased rainfall exerts an indirect effect on conflict through its impact on food prices. These findings suggest that the negative effects of climate variability on conflict can be mitigated by interventions and effective price management in local markets. Creating environments in which food prices are stable and reliable, and markets are accessible and safe, can lower the impacts of both climate change and conflict feedbacks.  相似文献   

14.
Long-term variations of annual and growing season rainfalls in Nigeria   总被引:1,自引:0,他引:1  
Summary Evidence for changes in the annual and growing season rainfall series for the period 1919 to 1985 in Nigeria are examined on a regional basis, using power-spectral and lowpass filter techniques, and the Mann-Kendall rank statistic. Four regions, the Coastal Zone, the Guinea-Savanna Zone, the Midland area and the Sahel, are used in the investigation of rainfall variation from south to north across the country.Quasi-periodic oscillations in the annual and growing season rainfall series are found to be concentrated in four spectral bands: 2.0–2.4, 2.7–2.9, 3.2–3.6 and 5.6–6.3 years. The spatial coherence of the fluctuations in annual and growing season rainfall is found to be limited to Nigeria south of 11 degrees north latitude. Evidence also emerges of a progressive decline in annual and growing season rainfall for northern Nigeria, north of nine degrees north latitude, for the period 1939–1985.With 5 Figures  相似文献   

15.
基于全球土地利用类型和覆盖度,利用生长季多年平均(1982~2015年)归一化植被指数(Normalized Difference Vegetation Index,NDVI)和气候平均态(气温、降水量)数据,讨论了全球植被格局与气候因子之间的关系,建立了两者之间的多元回归模型,并分析了植被对气温和降水气候态敏感性的特征。植被与气候因子在气候梯度上存在明显的对应关系,回归模型可较好拟合气候态NDVI的全球分布格局,拟合与观测NDVI的相关系数达0.90。其中,常绿阔叶林、混交林、常绿针叶林、落叶阔叶林、农田和木本稀树草原空间分布的拟合能力较好(r>0.8)。不同土地覆盖类型的NDVI对气温、降水气候态的空间敏感性特征不同。整体而言,植被对气温和降水的敏感性呈现反相关关系(r=-0.6)。不同土地覆盖类型对气温表现出正/负敏感性,寒带灌木对气温的敏感性最强,而农作物、草原、裸地对气温负敏感性较大;植被对降水的敏感性均表现出正敏感性,其中落叶针叶林、草原和稀树草原对降水的空间敏感性较强。  相似文献   

16.
Over the past decades, rainfall amount and frequency changed considerably on the Tibetan Plateau. However, how altered rainfall pattern affects vegetation growth and phenology in Tibetan alpine grasslands is poorly understood. In this study, we investigated the long-term effects of rainfall amount and frequency on production (i.e., aboveground biomass, AGB) and phenology of three perennial plants in a Tibetan alpine meadow from 1994 to 2005. Growth period (i.e., the dates from greening to senescence) was referred to plant phenology here. Our results showed that annual precipitation and total rainfall from large events (≥ 5 mm per day) were mainly distributed in the growing season, which increased significantly from 1994 to 2005 with more increment in May and July (p?<?0.05). Total AGB and growth periods of three plants were linearly correlated with annual precipitation and total rainfall from large events, but have insignificant correlations with total rainfall from small events (< 5 mm per day) and rainfall frequency (including small, large, and all events). The results suggest that aboveground plant production and phenology are more sensitive to changes in large rainfall events (≥ 5 mm per day) than small events (< 5 mm per day) in the alpine meadow ecosystems.  相似文献   

17.
华北平原降水量对冬小麦产量的影响   总被引:4,自引:1,他引:4  
盧其堯 《气象学报》1963,33(3):392-398
本文根据华北平原1955—1957年11个地点的冬小麦产量和降水量資料,利用R.A.Fisher等人提出的正交多項式方法,計算了华北平原降水量对冬小麦产量的效果,得到三点初步結果:①生长期降水总量与多小麦产量之間存在高度相关,②在生长期中的任何时間,“附加”降水都使产量增加,;③“附加”降水所产生的最大的良好效果出現在越冬始期和开花期附近,此时每1毫米“附加”降水可以使产量增加約为0.4—0.45斤/亩。  相似文献   

18.
The characteristics of rainfall regime and its variability in the sub-humid region of mid-Ghana is analyzed using daily rainfall data from the Wenchi, 1950–2000. Prior research in the area, suggests that climatic variability occurs at lower frequencies than the typical ENSO signal and may be more closely related to noted shifts in global climatic patterns. Fifty-six possible starting dates encompassing the traditional growing season, extending from late January to early November, at 5 day increments, are used to define temporal units of varying lengths, variable temporal units (VTUs). Rainfall characteristics in each unit are described by two variables: total rainfall and number of rainy days. Given the widely noted global climatic shift in the 1970s and the results of regional analyses, the 50 year record is sub-divided into two 20 year periods, 1950–1969 (period 1) and 1980–2000 (period 2). The means and variances of the two variables in each VTU are compared to identify any times when the changes in rainfall characteristics are most noticeable within the rainfall regime between periods. Both variables yield results consistent with the main rainy season and the long dry season being relatively unchanged, however the short dry spell is becoming wetter and the minor rainy season (September/October) has become significantly drier and shorter. The observations are consistent with the general north–south erosion of the bi-modal regime in West African which is associated with the southward shift of the ITCZ and the monsoonal system. This phenomenon is believed to be ongoing for the last 10,000 years in step with the hypothesized shift of the perihelion into the boreal winter. The use of independent arbitrary starting dates and durations (VTU) advances the understanding of temporal variability of rainfall, at a scale appropriate to agricultural practices in the study area.  相似文献   

19.
West-central Uganda, a biodiversity hotspot on the eastern edge of central equatorial Africa (CEA), is a region coping with balancing food security needs of a rapidly growing human population dependent on subsistence agriculture with the conservation of critically endangered species. Documenting and understanding rainfall trends is thus of critical importance in west-central Uganda, but sparse information exists on rainfall trends in CEA during the past several decades. The recently created African Rainfall Climatology version 2 (ARC2) dataset has been shown to perform satisfactorily at identifying rainfall days and estimating seasonal rainfall totals in west-central Uganda. Therefore, we use ARC2 data to assess rainfall trends in west-central Uganda and other parts of equatorial Africa from 1983–2012. The core variables examined were three-month rainfall variables for west-central Uganda, and annual rainfall variables and seasonal rainfall totals for a transect that extended from northwestern Democratic Republic of the Congo to southern Somalia. Significant decreases in rainfall in west-central Uganda occurred for multiple three-month periods centered on boreal summer, and rainfall associated with the two growing seasons decreased by 20 % from 1983–2012. The drying trend in west-central Uganda extended westward into the Congo rainforest. Rainfall in CEA was significantly correlated with the Atlantic Multidecadal Oscillation (AMO) at the annual scale and during boreal summer and autumn. Two other possible causes of the decreasing rainfall in CEA besides North Atlantic Ocean sea-surface temperatures (e.g., AMO), are the warming of the Indian Ocean and increasing concentrations of carbonaceous aerosols over tropical Africa from biomass burning.  相似文献   

20.
Accurate use of precipitation can be considered as one of the best options to decrease the amount of underground water extraction for agriculture in arid and semi-arid areas such as northeast of Iran. For this reason, characteristics of the growing season such as onset, cessation, and length of the growing period should be analyzed. In this paper, we have calculated growing season characteristics of five locations in northeast of Iran using 45?years historical daily weather data and employed four approaches with different calculation methods. As temperature is one of the limiting factors in irrigation-based agriculture, the first approach has been based on this factor. The three remaining approaches were based on joint rainfall and temperature approach, rainfall, evapotranspiration, and temperature approach, and the final approach was based on availability of adequate water in 0.25?m of soil profile. The calculated onset dates using second and third approaches have been based on soil water balance model and relative evapotranspiration rate, and both were evaluated also to find whether the onset is a false start occurrence or not. The results showed that, when temperature was the only limiting factor, Bojnourd station with 197?days showed the longest growing season, however, when precipitation was used along with temperature, longest growing season (124?days) was obtained for Sabzevar station. The third approach which benefits from a water balance model and is similar to rainfed conditions showed the longest growing season with 147?days for Mashhad station. When adequate soil water approach was used, Bojnourd station with 255?days showed the longest growing season. Evaluation of false start of the growing season indicated the lowest probability of false start occurrence for Mashhad compared with other locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号