首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The paper addresses the spatiotemporal development of the Kichera sequence of earthquakes of 1999 (more than 6000 events over the year) within the Kichera depression, terminating on land in the Northern Baikal basin; the series was the most intense of all earthquake sequences recorded in the Northern Cis-Baikal region (NCBR) since 1960. The spatial coordinates of earthquakes showed that the source rupture, originating in the area of the Kichera-Upper Angara interbasin mountainous isthmus, propagated in the SW direction toward Lake Baikal. Stresses in the sources of the two strongest shocks (Mw = 6.0 and 5.6) of the sequence were released along fault planes striking NE (normal type) and E-W (normal-strike-slip type). Focal mechanisms of aftershocks revealed the presence of differently oriented faults motions on which were controlled by a large rifting fault striking NE. The Kichera earthquakes are shown to have occurred under seismotectonic conditions dominated by NW-SE extension and to have been accompanied by active normal faulting promoting longitudinal growth of the Upper Angara depression and deepening of the Kichera depression. The seismotectonic strain rates calculated for the NCBR before and after 1999 were of the order of (0.1–1.0) × 10?10 yr?1, whereas their values were two to three orders larger during 1999. Thus, the Kichera earthquakes confirmed the high seismic potential of the NCBR and showed that this rift segment developed through growth of depressions and destruction of interbasin mountainous isthmuses.  相似文献   

2.
The results of analyzing the long (20–50 years) time series of geodetic observations carried out in the regions with enhanced seismotectonic activity (Kopet Dag, Kamchatka, and California) are presented. It is established that recent vertical and horizontal displacements in the fault zones estimated by instrumental geodetic observations with increased spatiotemporal resolution indicate that the deformations in the fault zones paradoxically deviate from the movements inherited from the previous geological epochs. The paradoxes of high and low deformation rates in recent geodynamics lie in the reliably established empirical fact that extremely high local deformation rates (up to 10?5 per annum and higher) exist in the fault zones in the setting of weak regional deformations, whose annual rates are by two to three orders of magnitude lower. Very low annual average rates of relative horizontal deformations, which only measure 3–5 amplitudes of tidal deformations of the solid Earth, are revealed in the seismically active regions of Kopet Dag and Kamchatka as well as in the San Andreas Fault Zone in northern California. The fault-block dilemma arising in the interpretation of the observations of recent fault geodynamics is formulated. Either the role of active element, which forms the present anomalous deformations, is played by a block, while a fault plays the role of the passive element, or the fault zone itself is a source of anomalous movements, while the blocks are passive elements (hosting medium). It is shown that paradoxes of low and high deformation rates vanish if we assume that the recent anomalous geodynamics is formed by parametric excitation of the deformation processes in the fault zones in the conditions of quasi-static loading.  相似文献   

3.
We used GPS velocities from approximately 700 stations in western China to study the crustal deformation before the Wenchuan MS8.0 earthquake. The processing methods included analyses of the strain rate field, inversion of fault locking and the GPS velocity profiles. The GPS strain rate in the E-W direction in the Qinghai-Tibet block shows that extensional deformation was dominant in the western region of the block (west of 92.5° E), while compressive deformation predominated in the eastern region of the block (from 92.5° E to 100° E). On a regional scale, the hypocentral region of the Wenchuan earthquake was located at the edge of an intense compression deformation zone of about 1.9 × 10−8/a in an east-west direction. The characteristic deformation in the seismogenic fault was compressive with a dextral component. The compression deformation rate was greater in the fault's western region than in its eastern region, and the strain accumulation was very slow on the fault scale. The results of a fault locking inversion show that the locking fraction and slip deficit was greater in the middle-northern section of the seismogenic fault than in the southern section. The GPS velocity profile before the Wenchuan earthquake shows that the compression deformation was smaller than the dextral deformation, which is asymmetrical with respect to the distribution of co-seismic displacement. These deformation characteristics should provide some clues to the Wenchuan earthquake which occurred in the later period of the earthquake cycle.  相似文献   

4.
We consider the results of reconstructing the stress-strain state of the Earth’s crust in South Baikal from the focal mechanism data for the Kultuk earthquake of August 27, 2008 (M w = 6.3) and its aftershocks. The source parameters of the main shock were determined by calculating the seismic moment tensor. The focal mechanism solutions of 32 aftershocks (M w ≥ 2.3) were obtained through the deployment of a local seismic network at South Baikal. It is found that the main shock and first aftershocks (August–September) gave rise to the activation of latitudinal fragments of the segmented near-edge fault, and the sources of the consequent aftershocks were dominated by the NW-striking planes related to the small intrabasin structures. The calculations of seismotectonic deformations based on the data on the focal mechanisms of the earthquakes show that the area of activation is dominated by the transtension regime (with deformation in the form of extension with shear). The epicentral and hypocentral fields of the aftershocks and the mechanisms of their sources reflect the complex tectonic structure of the source zone of the Kultuk earthquake, which exhibits a clear subvertical zonality of the local seismically active volume and a wedge-shaped area of crustal destruction.  相似文献   

5.
鄂尔多斯块体周缘地区现今地壳水平运动与应变   总被引:7,自引:1,他引:6       下载免费PDF全文
位于青藏块体和华北块体之间的鄂尔多斯块体及其周缘地区是中国大陆构造活动最活跃的地区之一,从1300年至今,在块体周边断陷盆地和西南缘断裂带上发生了五次8级以上的地震.为了了解该地区现今地壳运动、应变状态以及断裂滑动分布,我们收集了中国大陆构造环境监测网络2009—2013年、国家GPS控制网、跨断陷盆地的8个GPS剖面等共527个流动站和32个连续站GPS观测数据,获得了高空间分辨率的地壳水平运动速度场,进一步用均匀弹性模型计算了应变率分布.结果表明,块体内部GPS站点向NEE方向运动,速度变化较小,应变率大多在(-1.0~1.0)×10~(-8)/a之间;山西断陷带构造运动与变形最为强烈,盆地相对于鄂尔多斯块体为拉张变形,应变率为(1.0~3.0)×10~(-8)/a,相对于东部山地则为挤压变形,应变率为(-2.0~-3.0)×10~(-8)/a,盆地西侧断裂(如罗云山断裂、交城断裂)以拉张运动为主,拉张速率为2~3mm·a-1,盆地东侧断裂主要以右旋缩短运动为主,速率为1~3mm·a-1;河套断陷带西部的临河凹陷处于较强的张性应变状态,应变率为(2.0~3.0)×10~(-8)/a;块体西南边缘处于压缩应变状态,应变率为(-1.0~-2.0)×10~(-8)/a,六盘山断裂存在明显的地壳缩短运动,速率约为2.1mm·a-1,速率在断裂附近逐渐减小,反映了断裂处于闭锁状态;相对于鄂尔多斯块体内部渭河断裂带为左旋运动,速率为1.0mm·a-1,盆地处在弱拉张变形状态.  相似文献   

6.
基于合成速率法、趋势累积率法与跨断层资料等的结合,从时空的不同角度分析了青藏块体东北缘主要断裂应变积累的运动特征。结果显示:(1)2010~2016年,祁连山断裂带呈微弱拉张的运动态势,海原断裂带由张转压,六盘山断裂带在门源地震前显示张性运动,震后发生转折;(2)长期来看,基于趋势累积率D_c的计算结果显示了祁连山断裂带中、西段累积应变略高于东段,从量值上看整个青藏块体东北缘D_c高值区位于六盘山断裂带附近。  相似文献   

7.
The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.  相似文献   

8.
The Bob-Tangol earthquake of magnitude 5.8 (MS), occurred in southeastern Iran on 19 December 1977, not far from the region where the 1896 and 1933 earthquakes caused considerable damage and destruction. The shock was associated with a 19.5-km fault break at the surface with a maximum 20 cm right-lateral strike-slip movement along an Early Quaternary geological fault. Results of the field investigation together with the fault plane solution and epicentre location of the main shock are presented here in order to give a seismotectonic view of the event.Surface rupture and fault plane solution of this medium-magnitude earthquake demonstrate a considerable amount of right-lateral movement along a major Early Quaternary high-angle reverse fault. This change in fault behaviour and slip vector may indicate that evidence of Early Quaternary movement cannot always provide a good clue to present-day crustal deformation.  相似文献   

9.
A second-order hydrostatic theory is developed on the assumption that the trace of the Earth's inertia tensor, its mass and mean radius are invariant under any process causing deviations from the hydrostatic state.The hydrostatic flattening and the zonal coefficients of the hydrostatic gravitational field are obtained as ??1 = 299.638, J2 = 1072.618 × 10?6 and J4 = ?2.992 × 10?6, respectively.The internal theory using the preliminary reference earth model (PREM) of Dziewonski and Anderson (1981) yields ??1 = 299.627, J2 = 1072.701 × 10?6 and J4 = ?2.992 × 10?6. The agreement between these and the hydrostatic values indicate that PREM is suitable as a reference model as it represents the spheroidal density distribution in a state of zero non-hydrostatic stress while satisfying the fundamental geodetic observations of the invariant quantities.The small discrepancy between the hydrostatic flattening and the value deduced from PREM suggests that the density is underestimated at large depths and/or it is slightly overestimated in shallow regions of the Earth.The discrepancies between the hydrostatic and observed quantities persist after the removal of the accountable effects of isostatically compensated topography, permanent tidal deformation and the present mass anomalies associated with the Late-Pleistocene deglaciation. These ‘corrected’ discrepancies point to a triaxial non-hydrostatic figure which cannot be explained by the delayed response of the Earth to tidal deceleration.  相似文献   

10.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

11.
The MS 6.9 Menyuan earthquake in Qinghai Province, west China is the largest earthquake by far in 2022. The earthquake occurs in a tectonically active region, with a background b-value of 0.87 within 100 ?km of the epicenter that we derived from the unified catalog produced by China Earthquake Networks Center since late 2008. Field surveys have revealed surface ruptures extending 22 ?km along strike, with a maximum ground displacement of 2.1 ?m. We construct a finite fault model with constraints from InSAR observations, which showed multiple fault segments during the Menyuan earthquake. The major slip asperity is confined within 10 ?km at depth, with the maximum slip of 3.5 ?m. Near real-time back-projection results of coseismic radiation indicate a northwest propagating rupture that lasted for ~10 ?s. Intensity estimates from the back-projection results show up to a Mercalli scale of IX near the ruptured area, consistent with instrumental measurements and the observations from the field surveys. Aftershock locations (up to January 21, 2022) exhibit two segments, extending to ~20 ?km in depth. The largest one reaches MS 5.3, locating near the eastern end of the aftershock zone. Although the location and the approximate magnitude of the mainshock had been indicated by previous studies based on paleoearthquake records and seismic gap, as well as estimated stressing rate on faults, significant surface-breaching rupture leads to severe damage of the high-speed railway system, which poses a challenge in accurately assessing earthquake hazards and risks, and thus demands further investigations of the rupture behaviors for crustal earthquakes.  相似文献   

12.
2021年5月21日晚21时48分,云南省大理州漾濞县(震中:25.67°N,99.87°E)发生M_S6.4地震,震源深度8 km。为快速获得此次地震同震形变场及断层几何参数,研究该次地震的发震构造等,文章基于震前、震后的sentinel-1A卫星升降轨SAR数据进行二轨法差分雷达干涉测量(DInSAR),并基于Okada弹性半空间位错模型反演断层几何参数。研究结果如下:(1)此次地震造成的同震形变场长约19 km,宽约20 km;(2)升轨雷达视线向最大形变约为8.2 cm,降轨雷达视线向最大形变约为8.7 cm;(3)地震断层走向为313.7°,倾角为87°,滑动角为175°,为右旋走滑型断层,最大滑动量为0.79 m,反演得出的地震矩为1.48×10~(18) N·m,矩震级为M_W6.1。在川滇块体向南挤出的构造背景下,块体西边界的维西—乔后断裂、红河断裂发生右旋走滑,本次地震便是维西—乔后断裂南段分支断裂右旋走滑活动的体现。  相似文献   

13.
The preliminary research results of vertical deformation dislocation model of GongheM S =6.9 earthquake show that, the causative structure is a hidden fault with strike N60°W, dipping S47°W, which lies near the current subsidence center of Gonghe basin. The rupture length and width are 30km and 14km, the upper and lower bound depth of the fault in width direction are 3km and 17km respectively. The maximum coseismic and preseismic vertical deformation of GongheM S =6.9 earthquake are 247mm and about 100mm. The reasons why there existed rapid postseismic uplift are also given a tentative discussion.  相似文献   

14.
帕米尔高原位于地中海-喜马拉雅地震带上,晚新生代以来随着印度板块向欧亚板块持续不断地挤压汇聚,其构造运动是欧亚大陆最强烈的地区。高原腹地发育一系列近SN向正断层,包括近SN向的塔什库尔干正断层所处的帕米尔中部现代区域的构造应力场以EW向水平拉张为主。2016年11月25日发生的阿克陶MS 6.7级地震的发震构造为塔什库尔干断层分支的NWW向木吉盆地北缘断层,其具有右旋走滑兼正断性质。地震在震中附近产生同震地表形变带,全长约1km,呈近SN-NNE向水平拉伸,发育近EW—NWW向的张裂缝,为地震破裂的产物,张裂缝的最大水平拉伸位移量和最大垂直位移量分别为46cm和16cm。地表破裂带中的NE和NW向张剪裂缝只是连接贯通这些雁列的张裂缝,其水平相对位移量取决于张裂缝的水平拉伸量和张裂缝之间的几何关系。地表形变带表现的拉张性质与帕米尔高原腹地区域现代应力场最大主压应力为垂直向基本一致,可能与深部热物质上涌造成的上地壳拉伸有关。而地表形变带呈近SN向水平拉张,与区域近EW向拉张应力场之间存在显著差异,这可能是木吉盆地北缘右旋走滑正断层阶区局部应力场调整的结果。  相似文献   

15.
Taking the focal mechanisms into consideration, strain perturbations caused by preceding earthquakes are computed at the foci of 24 shallow intra-plate earthquakes (M ? 6) which occurred in the Japan area in the last 30 years. Significant accumulation of differential strain (namely, shear strain on the fault plane or earthquake-generating stress) preceded the occurrence of these major shocks in many cases (16 out of 24). The duration of strain accumulation amounted to several or ten years. Quantitatively, these effects were about 10?8-10?6 in strain and 1–100 mbar in stress. It is questionable whether small disturbances of this magnitude always constitute a definitive trigger. In some critical cases, however, a fractional change in strain (and stress) will probably play an essential role in initiating the precursory process which results in the occurrence of earthquakes.  相似文献   

16.

This paper gives a preliminarily study of the regional tectonic deformation setting before the Ms8.1 earthquake that occurred in the west of the Kunlun Mountains Pass; in the study, the data of the velocity field of crustal horizontal movement during 1991-2000 observed by GPS in and around the Qinghai-Tibet block and those of gravity reiteration in 1998 and 2000 were used. Analysis shows that the preparation and occurrence of this large earthquake are related to the horizontal movement and deformation setting in a large region and might be attributed to the block activity on a relatively large scale. Within the Qinghai-Tibet block, the region of left-lateral shear deformation is of a very large extent. This large earthquake occurred right in such a place where the left-lateral shear strain along the fault strike had the highest rate and the planar dilatation strain was tensile, which was on the margin of negative value region of abnormal gravity variation. The regional tectonic deformation setting can help the huge left-lateral strike-slip rupture to develop.

  相似文献   

17.
Andesitic–dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315?K, at low shear stress (0.085 to 0.42?MPa), low strain rate (between 1.1?×?10?8 and 1.9?×?10?5?s?1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226?K and strain rates lower than 1.8?×?10?4?s?1, is $ \log {\eta_{\text{app}}} = - 0.738 + 9.24 \times {10^3}{/}T(K) - 0.654 \cdot \log \dot{\varepsilon } $ where η app is apparent viscosity and $ \dot{\varepsilon } $ is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa?s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that internal shear heating may be significant ongoing heat source within these flows, enabling highly viscous lava to travel long distances.  相似文献   

18.
Analyses of structural and geomorphological data combined with remote sensing interpretation confirm previous knowledge on the existence of an extensional Quaternary tectonic regime in the Colfiorito area (Umbro-Marchean Central Apennines). This is characterized by a maximum principal axis of finite strain oriented approx. NE–SW, which is the result of a progressive deformation process due to pure and radial extension. Surface geological data, the crustal tectonic setting (reconstructed using a CROP 03 seismic reflection profile), and seismological data relative to the autumn 1997 Colfiorito earthquake sequence constrain the following seismotectonic model. We interpret the seismogenic SW-dipping low-angle normal fault pictured by seismic data as an inverted thrust ramp located in the basement at depth between 5 and 10 km. The surface projection of this seismogenic structure defines a crustal box within which high-angle normal faults are responsible for the deformation of the uppermost crust. The regional patterns of pre-existing basement thrusts therefore control the seismotectonic zoning of the area that cannot be directly related to the high-angle normal fault systems which cut through different crustal boxes; the latter system records, in fact, re-shear along pre-existing normal faults. Moreover, Quaternary slip-rates relative to high-angle normal faults in the Central Apennines are closely related to seismic hazard within each crustal box.  相似文献   

19.
The relation of magma and crustal activity has been studied from spatial distribution of 3He/4He ratios of gas and/or water samples over the Izu Peninsula, where significant crustal deformation associated with seismic swarm activities has been observed since 1970s. The air-corrected values of 3He/4He ratios ranged from 3.5 to 8.2 RA, where RA is the atmospheric 3He/4He ratio = 1.4 × 10? 6, indicating that helium is mostly of magmatic origin. Among the three pressure sources proposed to explain the crustal deformation, two inflation sources beneath the inland of northeast and the mid east coast of the Izu Peninsula locate in the broad distribution of high 3He/4He ratios, which supports relation of magma to the crustal uplift. In contrast, the distribution of 3He/4He ratios around the tensile fault assumed in the area of seismic swarms appears not to indicate existence of significant amount of magma below the tensile fault. Alternatively, the results suggest magma below a point several kilometers south of the tensile fault. The seismic swarms are explained either by fluid pressurization of thermal water heated by this magma or by intrusion of magma to the tensile fault moved obliquely from the deep magma reservoir.  相似文献   

20.
In Taiwan an international project to drill into the Chelungpu fault (TCDP) was initiated after the M w 7.6 Chi-Chi earthquake in 1999. At Takeng, two vertical holes (A and B) to depths of about 2 km have been drilled through the northern portion of the Chelungpu fault system. In this study, we conducted systematic hydromechanical tests on TCDP drillcores collected from Hole-A at various depths above and below the major slip zone of the Chelungpu fault. We focus on the measurements of permeability as function of pressure and the brittle failure behavior. Evolution of permeability as a function of pressure and porosity was measured using either steady-state flow or a pulse transient technique. When subjected to an effective pressure reaching 100 MPa, permeability values of shaly siltstone samples range from 10?16 to 10?19 m2. In comparison, permeability values of porous sandstones are at least an order of magnitude higher, ranging from 10?14 to 10?18 m2. To characterize permeability anisotropy associated with the bedding structure of the rocks of the Chelungpu fault, cylindrical samples were taken from the TCDP drillcores along three orthogonal directions, denoted X, Y and Z respectively. Direction Z is parallel to the TCDP core axis, and the other two directions are perpendicular to the core axis, with X (N105°E) perpendicular and Y (N15°E) parallel to the strike of the bedding. In shaly siltstones, permeability values of samples cored along the strike of bedding (direction Y) can be up to 1 order of magnitude higher than those cored perpendicular to the strike of bedding (direction X). These observations indicate that permeability anisotropy is controlled by the spatial distribution of bedding in Chelungpu fault host rocks. Permeability evolution of fault rocks plays an important role in dynamic weakening processes, which are particularly pertinent to large earthquakes such as the Chi-Chi earthquake. Our experimental data on permeability and its anisotropy of TCDP core samples provide necessary constraints on fault models and proposed weakening mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号