首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
采用双差定位方法,利用中国地震台网的数据对2017年8月9日精河6.6级地震的余震序列进行了重新定位。截至2017年8月14日16时,共获得209个余震的重新定位结果。结果显示,余震主要呈近EW向或NWW向分布,余震区长约50km,宽约17km。余震分布在主震的西侧,推断此次地震单侧破裂。余震震源深度为1~25km,其中,震级较大余震深度为8~17km。精河地震序列的余震活动随时间呈起伏状衰减,震后2天内比较活跃,此后出现较快衰减。随时间推移,余震区呈现中西部衰减慢、东部衰减快的特点。此次地震震中距2011年精河5.0级地震震中21km,相比2011年精河地震,其震源更深,震级更大,但震源机制解相近,均为逆冲型。结合区域构造背景分析认为,库松木契克山前断裂为此次地震发震构造的可能性较大。  相似文献   

2.
2014年新疆于田MS7.3级地震序列重定位   总被引:2,自引:0,他引:2       下载免费PDF全文
2014年新疆于田发生MS7.3地震,这一地区6年来连续发生2次强烈地震,震中相距不到110km.由于初始定位误差较大,于田地震的发震断层仍不清楚.本研究的主要目标是利用地震精定位方法对于田地震序列及其背景地震活动进行重新定位,确定于田地震的发震断层.本研究使用双差定位方法对于田地震序列进行重新定位.这一方法假设两个地震的震源距小于事件到台站的距离,两个事件到同一台站的走时差主要归因于其空间位置的偏移,因此可消除由于速度模型不准确引起的定位误差.重定位后得到了435个地震的位置参数.结果表明,2014年于田MS7.3级地震发生在阿尔金断裂带的西端,余震分布的优势方向为北东向,展布长度约33km,震源深度主要集中在4~12km,多数余震位于主震的西南侧.NS,EW和UD方向的定位误差分别为0.5km,1.1km和1.7km.于田地震余震序列总体衰减较慢.根据余震分布特征和震源机制解,认为此次地震的断层面为北东向的节面,阿尔金断裂的西南延伸分支断层是这次地震的主要发震构造.于田地震的发生与巴颜喀拉块体的东南向运动有关.  相似文献   

3.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

4.
曾宪伟  闻学泽  龙锋 《地球物理学报》2019,62(12):4604-4619
综合利用区域台站和流动台站(近台)的记录,基于初至P震相重新测定了2017年九寨沟序列M_S7.0主震和M_L≥3.0余震的震源位置,并利用较高精度的定位结果分析余震分布与地震构造的关系,解释发震断裂带的结构.获得的新认识有:(1)九寨沟主震震源深度为16km,位于余震带中段的南缘;余震主要分布深度为4~17km.(2)沿余震带的走向,余震分布与主震同震位错大小的分布明显相关.余震带中段8~16km深度存在的余震稀疏区与同震位错的高值区相吻合,应是发震断裂带主凹凸体的部位,也是主震时应变释放较充分的部位;余震带南东段10~18km深度的余震密集区对应了同震位错的亏损区之一,三次M_L≥5.0余震都发生于此;余震带西北段在5~10km之下既缺少余震,又属同震位错的亏损区,可能与那里多条断裂的交汇或合并造成的构造复杂性有关;余震带中-北西段3~5km深度的也缺少余震,也对应了浅部的同震位错亏损区.(3)证实了九寨沟地震的发震构造为虎牙断裂带北段,同时新揭示出发震断裂带表现为由主断裂和分支断裂构成的、向上分叉的花状结构,尺度约为4.5km宽(最大)、35km长,主断裂朝SW陡倾.这些反映主震破裂可能不只受控于单一的断裂,而有可能是沿主断裂发生主破裂,而沿分支断裂发生次要破裂.另外,本文对发震断裂带结构的分段解释,是遵循构造地质学原理去综合震源排列、震源机制解、地表断层已知位置、相邻剖面断层解释结果等信息的分析结果,而不仅仅依据余震的密集分布进行推断.  相似文献   

5.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

6.
2014年2月12日在新疆于田县发生了MS7.3地震,主震前一天在震区发生了MS5.4前震,震后余震活动频繁,由于震区台站十分稀疏和不均匀、地壳速度结构复杂,台网常规定位结果精度有限,很难从中获得序列的空间分布特征和活动趋势的正确认识.本文首先利用位于震区附近的于田地震台5年记录的远震波形数据,采用接收函数方法研究了震区附近的地壳结构,建立了震源区的地壳速度模型.在此基础上,联合震相到时和方位角对2014年于田MS7.3地震序列(从2014年02月11日-2014年04月30日,共计577次地震)进行了重新绝对定位.结果显示,(1) 重定位后的前震和主震震中位置明显向地表破裂带及其附近的阿尔金分支断裂(南肖尔库勒断裂和阿什库勒-肖尔库勒断裂)靠近,两者相距5.4 km,主震位置为36.076°N、82.576°E,震源深度为22 km, 前震位置为36.055°N、82.522°E,震源深度为19 km;(2) 本文重定位结果显示,余震序列沿NEE-SWW展布,优势分布长度约73 km、宽度约16 km,平均震源深度为14.8 km,其中77%的余震分布在地表破裂带的西南端,这部分余震中少数沿阿什库勒-肖尔库勒断裂分布,绝大多数沿北东东向的南肖尔库勒断裂分布,位于地表破裂带东北端的余震沿阿什库勒-肖尔库勒断裂分布,但发生在地表破裂带的余震极少;重定位后,位于地表破裂带西南侧的震中分布由台网目录的近南北向变为北东向,与地表破裂带、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂走向一致;(3) 沿重定位剖面的地震分布,可推断位于地表破裂带西南段的南肖尔库勒断裂与位于北东段的阿什库勒-肖尔库勒断裂倾向反向,南肖尔库勒断裂的倾向为SE,阿什库勒-肖尔库勒断裂的倾向为NW,这与本次地震野外考察得到的断裂性质一致.综合重定位结果、地表破裂带分布、震源机制解、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂的性质认为,2014年于田MS7.3地震的发震构造为阿尔金断裂西南尾段的两条分支断裂——南肖尔库勒断裂和阿什库勒-肖尔库勒断裂.  相似文献   

7.
The 2022 MS 6.8 Luding earthquake is the strongest earthquake in Sichuan Province, Western China, since the 2017 MS 7.0 Jiuzhaigou earthquake. It occurred on the Moxi fault in the southeastern segment of the Xianshuihe fault, a tectonically active and mountainous region with severe secondary earthquake disasters. To better understand the seismogenic mechanism and provide scientific support for future hazard mitigation, we summarize the preliminary results of the Luding earthquake, including seismotectonic background, seismicity and mainshock source characteristics and aftershock properties, and direct and secondary damage associated with the mainshock. The peak ground displacements in the NS and EW directions observed by the nearest GNSS station SCCM are ~35 mm and ~55 mm, respectively, resulting in the maximum coseismic dislocation of 20 mm along the NWW direction, which is consistent with the sinistral slip on the Xianshuihe fault. Back-projection of teleseismic P waves suggest that the mainshock rupture propagated toward south-southeast. The seismic intensity of the mainshock estimated from the back-projection results indicates a Mercalli scale of VIII or above near the ruptured area, consistent with the results from instrumental measurements and field surveys. Numerous aftershocks were reported, with the largest being MS 4.5. Aftershock locations (up to September 18, 2022) exhibit 3 clusters spanning an area of 100 km long and 30 km wide. The magnitude and rate of aftershocks decreased as expected, and the depths became shallower with time. The mainshock and two aftershocks show left-lateral strike-slip focal mechanisms. For the aftershock sequence, the b-value from the Gutenberg-Richter frequency-magnitude relationship, h-value, and p-value for Omori’s law for aftershock decay are 0.81, 1.4, and 1.21, respectively, indicating that this is a typical mainshock-aftershock sequence. The low b-value implies high background stress in the hypocenter region. Analysis from remote sensing satellite images and UAV data shows that the distribution of earthquake-triggered landslides was consistent with the aftershock area. Numerous small-size landslides with limited volumes were revealed, which damaged or buried the roads and severely hindered the rescue process.  相似文献   

8.
2022年1月8日青海省海北州门源县发生MS6.9地震,震后产生了长约22 km的地表破裂带,青海、甘肃和宁夏等多地震感强烈。本文基于区域地震台网资料,通过多阶段定位方法对门源MS6.9地震早期序列(2022年1月8日至12日)进行了重定位,并利用gCAP方法反演了主震和MS≥3.4余震的震源机制和震源矩心深度,计算了现今应力场体系在门源MS6.9地震震源机制两个节面产生的相对剪应力和正应力。结果表明:门源MS6.9地震的初始破裂深度为7.8 km,震源矩心深度为4 km,地震序列的优势初始破裂深度主要介于7—8 km之间,而MS≥3.4余震的震源矩心深度为3—7 km;该地震序列的震源深度剖面显示震后24个小时内的地震序列长度约为25 km,与地表破裂带的长度大体一致,整体地震序列长度约为30 km,其中1月8日MS6.9主震和MS5.1余震位于余震区西段,1月12日MS5.2余震位于余震区东段。2022年1月8日门源MS6.9主震的震源机制解节面Ⅰ为走向290°、倾角81°、滑动角16°,节面Ⅱ为走向197°、倾角74°、滑动角171°,根据余震展布的总体趋势估计断层面走向为290°,表明此次地震为近乎直立断层面上的一次左旋走滑型事件;MS≥3.4余震的震源机制解显示这些地震主要为走滑型地震,P轴走向从余震区西段到东段之间大体呈现NE向到EW向的变化。现今应力场体系在门源MS6.9主震震源机制解节面Ⅰ上产生的相对剪应力为0.638,而在节面Ⅱ上的相对剪应力为0.522,表明这两个节面均非构造应力场的最大释放节面,这与2016年门源MS6.4地震逆冲型震源机制为构造应力场的最优释放节面有着明显差异。结合地质构造、震源机制和余震展布,2022年1月8日门源MS6.9主震的发震构造可能为冷龙岭断裂西段,其地震断层错动方式为左旋走滑。根据重定位结果、震级-破裂关系以及剪应力结果,本文认为门源地区存在一定的应力积累且应力未得到充分释放,该地区仍存在发生强震的危险。   相似文献   

9.
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning’er M6.4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning’er M6.4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40km and the width is 30km, concentrated obviously at the lateral displacement area between the Pu’er fault and the NNE-trending faults, with the majority occurring on the Pu’er fault around the main shock. The depths of aftershocks are from 2km to 12km, and the predominant distribution is in the depth of 8~10km. The mean depth is 7.9km. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu’er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu’er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.  相似文献   

10.
The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M?>?2 (up to M4.4) that occurred during the 24?h preceding the mainshock. The foreshocks occurred along a north?Csouth trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15?s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120?km from the south end of the Elsinore fault zone north of the US?CMexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50?km long, as well as a 10?km north?Csouth aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific?CNorth America plate motion from the Gulf of California in the south into the southernmost San Andreas fault system to the north. We propose that the location of the 2010 El Mayor-Cucapah, as well as the 1992 Landers and 1999 Hector Mine earthquakes, may have been controlled by the bends in the plate boundary.  相似文献   

11.
2014年2月12日新疆于田发生MS7.3地震,该震前1天曾发生MS5.4前震,震后余震活动频繁.截止到2月20日12时,该地震序列记录到4000多次余震,最大余震为2月12日MS5.7地震,序列类型为前震—主震—余震型.该地震前震的b值明显低于该区域正常活动的b值和余震的b值.这次地震位于西昆仑断裂带与阿尔金断裂带的交汇区域的阿什库勒断裂北段,震源机制解为走滑型.余震区NE向长70 km、宽20 km,分为主余震分布区和次余震分布区,其中ML4.0以上强余震基本位于NE向主余震分布区,N--S向的次余震分布区则以ML3.0左右地震分布为主,显示该部分可能受到主震的触发作用.于田地区曾发生的2008年3月21日MS7.3地震的震源机制解为正断型,距这次地震约100 km;2012年8月12日发生的MS6.2地震的震源机制解为正断型,距这次地震约10 km.该地区的发震构造背景是:在NE向阿尔金断裂带尾端向SW方向延伸过程中,左旋走滑作用逐渐转换为拉张作用,形成多条左旋走滑兼具拉张作用的断裂. 2014年于田MS7.3地震的发震模式表现为:左旋走滑的阿什库勒断裂北段与南段因速率差异而产生的小型构造盆地,在区域拉张作用力下顺时针旋转;2008年MS7.3张性地震后区域的伸展作用增强,导致盆地南侧的苦牙克断裂发生2012年MS6.2张性地震,该地震引起2014年MS5.4前震,两者激发其后在盆地北侧阿什库勒断裂发生了2014年MS7.3主震.   相似文献   

12.
2016年1月21日01时13分13.0秒(北京时间),青海省海北州门源县发生MS6.4地震.为了更好地认识这次地震的发震构造,本文利用青海省地震台网和甘肃省地震台网的省级固定地震台站及部分流动地震台站记录到的波形资料,通过重新拾取震相和联合HYPOINVERSE 2000与HypoDD定位方法,对2016年1月21日青海门源地震序列ML≥1.8的189个地震事件进行了重新定位,并采用gCAP方法分别反演了主震的双力偶机制解和全矩张量解. 定位结果显示,主震位置为37.67°N、101.61°E,震源深度为11.98 km;余震序列展布方向为SE和NW两个方向、长度约16 km,震源深度优势分布为4~14 km,断层面倾向为SW方向. 利用gCAP方法得到的矩心深度在8~9 km之间. 结合野外地质调查结果,认为该次地震事件为一次逆冲型事件,其发震断层可能为北西向冷龙岭断裂与北西向民乐—大马营断裂之间的一条盲断层,推测由于印度板块与欧亚板块的碰撞挤压使得青藏高原北缘与阿拉善地块之间的东西向挤压而造成的断层应力失稳,从而形成门源地震.  相似文献   

13.
A moderate-size earthquake (Mw = 6.2) occurred on 3 February 2002 (07:11:28 GMT) in the Sultanda??-Çay region of southwest Turkey. The mainshock was followed by a strong aftershock of Mw = 6.0 just 2 h after the mainshock, at 09:26:49 GMT. A temporary seismic network of 27 vertical component seismometers was installed to monitor aftershock activity. One thousand sixty nine aftershocks (0.2 < ML < 3.3) were recorded during the period from 5 to 10 February 2002. We analyzed the P and S arrival times and P wave first motion data to obtain high-quality hypocenters and focal mechanisms, which revealed fine details of the fault zone. We infer that the mainshock has ruptured a segment of the Sultanda? Fault Zone that is approximately 37 km long and 7 km wide at depth. The average slip over the rupture plane during the mainshock is estimated to be 32 cm. The linear distribution of the aftershocks and the location of the mainshock epicenter suggest that rupture has initiated in the eastern bending of the fault and propagated unilaterally to the west. The majority of fault plane solutions indicate E–W to ESE–WNW striking oblique–normal faulting mechanisms with an average dip angle of 62° N ± 10° . The high-resolution aftershock seismicity image also shows that faulting involved a complex array of synthetic and possibly antithetic structures during the evolution of the aftershock sequence. The steady increase of the b value towards the west implies that the highest moment release of the mainshock occurred to the west of the epicenter. The study clearly shows the activation of the WNW–ESE-trending Sultanda? Fault Zone along the southern margin of the Ak?ehir-Afyon Graben (AAG). The westernmost end of the aftershock activity corresponds to a structurally complex zone distinct from the main rupture. It is characterized by both ENE–WSW- and NNE–SSW-trending oblique-slip normal faulting mechanisms, the latter being associated with the NNE–SSW-trending Karam?k Graben. The intersection of these two grabens, AAG and Karam?k Graben, provides abundant faults available for failure in this region. The occurrence pattern of large events in recent years indicates a possible migration of earthquakes from east to west. Thus, we conclude that this has an important implication for earthquake hazard for the city of Afyon, which lies along the same fault line and only 20 km west of the termination point of the aftershock zone.  相似文献   

14.
本研究采用基于贝叶斯理论的绝对定位方法对2014年2月12日新疆于田MS7.3级地震进行绝对定位,得到震中位置为82.56°E、36.04°N、震源深度为12.3 km;采用双差定位法对254个地震序列进行相对定位,得到101个重定位事件.结果显示,主震位于阿尔金断裂带西南端多个分支断裂的交汇处.余震震源主要分布范围在5~10 km深度之间,主震处余震代表的断层面较为陡立,且余震序列呈现出明显的西南向纯单侧扩展模式.沿阿尔金断裂带主震的北东向民丰震区本次地震后显示一个明显的地震丛集,说明本次主震对该震区具有触发作用.  相似文献   

15.
2014年11月22日康定M6.3级地震序列发震构造分析   总被引:18,自引:5,他引:13       下载免费PDF全文
2014年11月22日在NW向鲜水河断裂带中南段四川康定县发生M6.3级地震,11月25日在该地震震中东南约10km处再次发生M5.8级地震.基于中国国家数字地震台网和四川区域数字地震台网资料,采用多阶段定位方法对本次康定M6.3级地震序列进行了重新定位;利用gCAP(generalized Cut And Paste)矩张量反演方法获得了M6.3和M5.8级地震的震源机制解与矩心深度,分析了本次地震序列的发震构造,并结合历史强震破裂时空分布和2001年以来小震重新定位结果,对鲜水河断裂带中段强震危险性进行了初步探讨.获得的主要结果如下:(1)M6.3级主震震中位于101.69°E、30.27°N,震源初始破裂深度约10km,矩心深度9km;M5.8级地震震中位于101.73°E、30.18°N,初始破裂深度约11km,矩心深度9km.gCAP矩张量反演结果揭示这两次地震双力偶分量占主导,M6.3级地震的最佳双力偶解节面Ⅰ走向143°/倾角82°/滑动角-9°,节面Ⅱ走向234°/倾角81°/滑动角-172°.M5.8级地震最佳双力偶解节面Ⅰ走向151°/倾角83°/滑动角-6°,节面Ⅱ走向242°/倾角84°/滑动角-173°.依据余震分布长轴展布与断裂走向,判定节面Ⅰ为发震断层面,M6.3和M5.8级地震均为带有微小正断分量的左旋走滑型地震.(2)序列中重新定位的459个地震平均震源深度约9km,地震主要集中分布在6~11km深度区间,余震基本发生在M6.3和M5.8级地震震源上部.依据余震密集区展布范围,推测本次康定地震的震源体尺度长约30km、宽约4km、深度范围约6km.M6.3级主震震源附近的余震稀疏区可能是一个较大的凹凸体(asperity),在主震中能量得以充分释放.(3)最初3天的余震主要分布在M6.3级地震NW侧;而M5.8级地震之后的余震主要集中在其震中附近.M6.3级地震以及最初3天的绝大部分余震发生在倾角约82°近直立的NW走向色拉哈断裂上;M5.8级地震与其后的多数余震发生在倾角约83°近直立的NW走向折多塘断裂北端走向向北偏转部位,M5.8级地震可能是M6.3级地震触发相邻的折多塘断裂活动所致.(4)康定M6.3与M5.8级地震发生在鲜水河断裂带乾宁与康定之间的色拉哈强震破裂空段,本次地震破裂尺度较小,尚不足以填补该强震空段.色拉哈段以及相邻的乾宁段7级地震平静时间均已超过其平均复发周期估值,未来几年存在发生7级地震的危险.康定M6.3级地震序列基本填补了震前存在于塔公与康定之间的深部小震空区,未来强震发生在塔公至松林口段深部小震稀疏区内的可能性很大.  相似文献   

16.
Using the double-difference relocation algorithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake (M S 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 km depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-VP, low-VS, and high-Poisson’s ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might significantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.  相似文献   

17.
采用双差定位法对2013年7月22日甘肃岷县—漳县交界地区M 6.6地震及主震后48小时内388次余震序列进行重新定位,得到350个精定位地震数据。结果表明,余震优势展布以北东向较大倾角的铲状结构为特征,长约12 km,以主震为中心两侧对称分布;震源深度主要集中在4—10 km范围内,但余震震级由10 km左右深度的3—4级向3 km深度之上近地表的2—3级迁移变化;余震分布清晰呈现双层结构,较深层分布在4—10 km深度,而较浅层分布3 km深度之上,2层之间地震分布较少。分析认为,浅层地震可能为本次地震地表破坏较强原因之一。震源深度剖面显示,破裂面向NE倾斜,推测此次地震的发震断裂为临潭—宕昌断裂。  相似文献   

18.
An earthquake with MS5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.  相似文献   

19.
本研究采用双差定位法对2014年 8月3日至7日期间鲁甸MS6.5级主震及647个余震序列进行重新定位,得到471个重定位结果.结果显示,主震的震源深度为13.3 km,与破裂过程显示的初始破裂深度较为接近,余震序列呈现出近东西向-北西向的不对称共轭状分布,近东西向长约17 km,而北西向长约22 km,小震优势分布深度为10 km以上,且由主震处沿共轭断层分别向东南向和近东西向逐渐往10 km深度以上的浅部迁移.小震分布还展示出发震断层高倾角分布,且与昭通-鲁甸断裂分支断裂包谷垴-小河断裂活动相关.由于主震破裂的质心深度可为深入认识本次地震灾害严重提供重要证据,为此我们采用gCAP(generalized Cut And Paste)方法反演了包括主震在内共5个4.0级以上地震的震源机制解,结果显示主震质心深度仅约5.0 km,与已有破裂过程显示的较大滑移量处于2~8 km之间的深度一致.本次主震错断了互为共轭的两条断裂,这种共轭破裂模式与矩心深度较浅,可能为本次地震致灾严重的重要原因.  相似文献   

20.
利用青海和周边87个地震台站于2022年1月8—13日记录的青海门源M6.9地震主震及680次余震资料,经双差地震定位重新进行震源位置的修定,获得633个地震重新定位后的震源信息。结果显示,此次地震的余震分布明显以昌马—俄博断裂南末梢端为界分为东、西两段,西段呈近EW向沿托勒山断裂东段分布,东段呈NWW向沿冷龙岭断裂西段分布。重新定位前余震初始震源深度集中分布在5~15 km,重新定位后变化为在0~20 km深度范围内偏正态分布。根据重新定位后余震分布特点并参考地表破裂带的展布,依据成丛地震发生在断层附近的原则,选取2个矩形区域,基于这2个区域内重新定位后的震源信息,利用模拟退火与高斯\|牛顿相结合的算法进行断层面拟合计算,完整地获得每一个拟合区域的断层面参数。结果表明托勒山断裂东段断层面与冷龙岭断裂西段断层面分别为长约15 km总体走向为近EW向的高倾角左旋走滑断裂与长约12 km总体走向为NWW向的高倾角大型左旋走滑断裂。此次青海门源地震可能是上述两断层面末端相互挤压共同破裂形成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号