首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Based on the digital waveforms of the Xinjiang Digital Seismic Network,the Jinghe M_S6.6 earthquake sequence( M_L≥1. 0) were relocated by HypoDD,The characteristics of the spatial distribution and the seismogenic structure of this earthquake sequence were analyzed. The results show that the main shock is relocated at 44. 2639° N,82. 8294° E,and the initial rupture depth is 17. 6 km. The earthquake sequence clearly demonstrates a unilateral extension of about 20 km in the EW direction,and is mainly located at a depth of 7km-17 km. The depth profile along the aftershock direction shows that the focal depth of aftershocks tend to be shallower within 10 km to the west of the main shock,the focal depth of the aftershock sequence with the tail direction deflecting SW is deeper. The depth profile perpendicular to the earthquake sequence shows a gradual deepening of the seismic sequence from north to south,which indicates that the fault plane is dipping south.According to the focal mechanism solution,given by the Institute of Geophysics,China Earthquake Administration,and the geological structure of the seismic source region,it is inferred that the seismogenic structure of the Jinghe M_S 6.6 earthquake may be the eastern segment of the Kusongmuxieke fault.  相似文献   

2.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

3.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic  相似文献   

4.
We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M≥2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan fault zone. In the relocation process, we added seismic data from portable seismic sta-tions close to the shocks to constrain focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south, with a large strike-slip component in the north.  相似文献   

5.
After the Yushu M S 7.1 earthquake on April 14,2010,a large number of aftershocks were recorded by the surrounding permanent network and temporary seismic stations.Due to the distribution of stations,knowledge about velocity structure,the reliability of seismic phases,and so on,the location result from conventional method is usually of low precision,from which it is difficult to recognize the spatial and temporal distribution and the trends of aftershock activity.In this paper,by using teleseismic waveforms recorded by permanent station,the seismic velocity structure beneath the vicinity is obtained from receiver function stacking and inversion methods.And the Yushu earthquake sequences are relocated from seismic phase data by HypoDD.The results show that the Yushu M S 7.1 earthquake occurred at 13 km depth;the aftershock sequences were distributed mainly in the NWW along the Garzê-Yushu fault,and most aftershocks were concentrated in a 100 km length and 5-20 km depth.Combined with the velocity structure,it can be inferred that the earthquake mainly destroys the high-velocity layer of the upper crust.In the west of the seismic fault near(33.3°N,96.2°E),the aftershock sequences were distributed like a straight column,suggesting there was a comminuted break from 25km depth to the ground.  相似文献   

6.
Using the double-difference relocation algorithm,we relocated the 20 April 2013 Lushan,Sichuan,earthquake(MS7.0),and its 4,567 aftershocks recorded during the period between 20 April and May 3,2013.Our results showed that most aftershocks are relocated between10 and 20 km depths,but some large aftershocks were relocated around 30 km depth and small events extended upward near the surface.Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault.Furthermore,the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault.These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault,which is somewhat similar to the genesis of the 2008Wenchuan earthquake.The Lushan mainshock is underlain by the seismically anomalous layers with low-VP,low-VS,and high-Poisson’s ratio anomalies,possibly suggesting that the fluid-filled fractured rock matrices might significantly reduce the effective normal stress on the fault plane to bring the brittle failure.The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths,if any.  相似文献   

7.
Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.  相似文献   

8.
On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of aftershocks provided by the China Earthquake Network Center and the characteristic of Longmenshan active faults system, combined with the current preliminary focal mechanism solution, the fault rupture direction is determined. With the finite fault inversion method, we invert the rupture process of the Lushan M s 7.0 earthquake by teleseismic waveforms data. The inversion results indicate that the main shock is dominated by thrust fault component and the rupture initiated at depth of 15 km, and most of slip ruptured around the hypocenter with the peak slip of about 1.5 m. Most of rupture slips released at the first 20 s and the main rupture occurred at the first 10 s after the onsets of the mainshock. Most of seismic energy released near the hypocenter with a length of 28 km, especially on both sides of the hypocenter with the range of 20 km, and the seismic energy released relatively smaller in other areas. There is a large area with weak slip between the main rupture and another two asperities on both sides of the hypocenter; it may imply that the accumulated strain on the rupture fault has not been completely released. Therefore, there is a significant possibility of having strong aftershocks in the areas where energy is not fully released. This is also the main reason why there are a lot of moderate to strong aftershocks in the Lushan aftershock sequence. In addition, there is an earthquake vacant zone with a length of about 50 km between the Wenchuan M w 7.9 earthquake and this event, which is of high earthquake risk and is deserved to be paid close attention to.  相似文献   

9.
In this study,data from the Xinjiang regional network and IRIS shared global stations are used to relocate the Akto M_S6. 7 earthquake sequence on November 25,2016 by using double difference location method. Three earthquakes of M_S4. 8,M_S6. 7 and M_S5. 0 are inverted by using the g CAP method,and the focal mechanism solutions are obtained.According to the results of relocating,the location of the main shock is 39. 22°N,73. 98°E,the distribution of the earthquake sequence is about 70 km in length,and the focal depth is mainly within the range of 5-20 km. The plane and depth profiles of the earthquake sequence show that aftershocks extended in SEE direction after the main shock and the dip angle of fault plane is steep. Focal mechanism results show that the three earthquakes are characterized by strike-slip movement. Based on the results of field geological investigation,it is inferred that the seismogenic fault of the Akto earthquake is Muji fault,which is located at the northernmost end of the Kongur extensional system.The possible cause of this earthquake is that the Indian Plate continues to push northward,and during this compression process,the Indian Plate is affected by the clockwise rotation of the Tarim basin,which causes the accumulation of right-lateral action of the Muji fault,resulting in this earthquake.  相似文献   

10.
The 2021 Qinghai Maduo M_S7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years, which spatially filled in the gap of strong earthquake in the eastern section of the northern block boundary. In this study, the aftershock sequence within 8 days after the mainshock was relocated by double difference algorithm. The results show that the total length of the aftershock zone is approximately 170 km; the mainshock epicenter is located in the center of the aftershock zone, indicating a bilateral rupture. The aftershocks are mainly distributed along NWW direction with an overall strike of 285°. The focal depth profiles indicate that the seismogenic fault is nearly vertical and dips to southwest or northeast in different sections, indicating a complex geometry. There is an aftershock gap located to the southeast of the mainshock epicenter with a scale of approximately 20 km. At the eastern end of the aftershock zone, horsetaillike branch faults show the terminal effect of a large strike-slip fault. There is a NW-trending aftershock zone on the north side of the western section, which may be a branch fault triggered by the mainshock. The location of the aftershock sequence is close to the eastern section of the Kunlun Mountain Pass-Jiangcuo(KMPJ) fault. The sequence overlaps well with surface trace of the KMPJ fault. We speculate that the KMPJ fault is the main seismogenic fault of the M_S7.4 Maduo earthquake.  相似文献   

11.
Focal Fault of the 1999 Datong Ms5.6 Earthquake in Shanxi Province   总被引:1,自引:0,他引:1  
Several earthquakes with Ms≥5.0 occurred in the Datong seismic region in 1989,1991 and 1999,The precise focus location of the earthquake sequence was made by the records of the remote sensing seismic station network in Datong.Using that data together with macro-intensity distribution and focal mechanism solutions,we analyze the difference among three subsequences.The results show that the focal fault of the 1999 Ms 5.6 earthquake was a NWW-trending left-lateral strike-slip fault.It is 16km long and 12km wide.It developed at the depth of 5km and is nearly vertical in dip.The two previous earthquake subsequences,however,were generated by activity along NNE-trending right-lateral strike-slip fault.It can be found that the rupture directioin of the 1999 earthquake has changed.It is generally found that a rupture zone has more than two directions and has different strength along these two directions.The complicate degree of focal circumstance is related to the type of earthquake sequences.There is the NE-trending Dawangcun fault and the NW-trending Tuanbu fault in the seismic region,but no proof indicates a connection between focal faults and these two tectonic faults.The feature that focal faults of three subsequences are strike-slip is different from that of the two tectonic faults.It is suggested that the 1999 earthquake subsequence was possibly generated by a new rupture.  相似文献   

12.
The parameters,stress field background,geological tectonics and seismic sequence of the March 21,2008,M_S 7. 4 Yutian,Xinjiang earthquake are discussed in this paper. The characteristics of seismic activity in the epicenter and its adjacent region before the earthquake are analyzed; and a comparison is made between the M_S 7. 4 Yutian earthquake sequence,the Wenchuan M_S 8. 0 earthquake sequence and the Wuqia M_S 6. 9 earthquake sequence. The results show the M_S 7. 4 Yutian earthquake occurred in the junction between the Altyn Tagh fault and the western Kunlun fault,resulting perhaps from the tensile fracture of the branch fault located southwest of the Ashikule basin due to left-1ateral dislocation of the Altyn Tagh fault; the seismic sequence is of main shock-aftershock type, the strongest aftershock being M_S 5. 8. The aftershocks attenuated quickly,and occurred in groups; the focal mechanism solutions and epicenter distribution have revealed a unilateral rupture source of this earthquake. Seismic activity shows that there was medium and medium-short term abnormity before the earthquake,but there was not short-imminent abnormity. Seismic activity of this earthquake sequence enhanced before the M_S 8. 0 Wenchuan and the M_S 6. 9 Wuqia earthquakes,showing the window effect to some extent.  相似文献   

13.
On April 20, 2013, an Ms7.0 earthquake occurred in Ya’an-Lushan region, Sichuan Province, China, killing and injuring morethan one thousand people. Therefore, it is critical to outline the areas with potential aftershocks before reconstruction andre-settlement as to avoid future disasters. Based on the elastic dislocation theory and multi-layered lithospheric model, we calculate the co-and post-seismic stress changes caused by the Wenchuan and Lushan earthquakes to discuss the relationshipbetween Mw7.9 Wenchuan earthquake and Ms7.0 Lushan earthquake, the influences on the distribution of aftershock caused bythe Lushan earthquake, and the stress changes on major faults in this region. It is shown that the Coulomb failure stress increment on the hypocenter of Lushan earthquake caused by the Wenchuan earthquake is about 0.0037-0.0113 MPa. And the possible maximum value (0.0113 MPa) is larger than the threshold of stress triggering. Therefore, the occurrence of Lushanearthquake is probably effectively promoted by the Wenchuan earthquake. The aftershock distribution is well explained by theco-seismic stress changes of Lushan earthquake. By the two ends of the rupture of Lushan earthquake with increased Coulombfailure stress, a lack of aftershock recordings indicates the high seismic hazard. The stress accumulation and correspondingseismic hazard on the Kangding-Dafu segment of the Xinshuihe fault, the Beichuan-Yingxiu fault, the Pengxian-Guanxianfault, and the Ya’an fault are further increased by the Lushan earthquake and post-seismic process of Wenchuan earthquake.  相似文献   

14.
The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China.This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area.We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method.The inversion results are as follows:the strike is 21.6°,the dip angle is 89.5°,the slip angle is 170°,the fault length is about 160 km,the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km.This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust.Moreover,the surface seismic fault,intensity distribution of the earthquake,earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result.  相似文献   

15.
Both P- and S-wave arrivals were collected for imaging upper crustal structures in the source region of the April 20, 2013 Lushan earthquake. High-resolution, three- dimensional P and S velocity models were constructed by travel-time tomography. Moreover, more than 3700 after- shocks of the Lushan earthquake were relocated via a grid search method. The P- and S-wave velocity images of the upper crust show largely similar characters, with high and low velocity anomalies, which mark the presence of sig- nificant lateral and vertical heterogeneity at the source region of the Lushan earthquake. The characteristics of the velocity anomalies also reflect the associated surface geo- logical tectonics in this region. The distributions of high velocity anomalies of both P- and S-waves to 18 km depth are consistent with the distributions of relocated after- shocks, suggesting that most of the ruptures were localized inside the high velocity region. In contrast, low P and S velocities were found in the surrounding regions without aftershocks, especially in the region to the northeast of the Lushan earthquake. For the relocated aftershocks of the Lushan earthquake from this study, we found that mostaftershocks were concentrated in a zone of about 40 km long and 20 km wide, and were located in the hanging wall of Dayi-Mingshan fault. The focal depths of aftershocks increase from the southeast to the northwest region in the direction perpendicular to the fault strike, suggesting that the fault ruptured at an approximate dip angle of 45°. The main depths of the aftershocks in the northwest of the main shock are significantly shallower than expected, revealing the different seismogenic conditions in the source region.  相似文献   

16.
On February 3~(rd), 2020, an isolated M_S5.1 earthquake occurred in the northern section of the Longquanshan fault zone. This study aims at defining the geometry of seismogenic structures of this earthquake. In detail, centroid moment tensor inversion results show that the earthquake is characterized by a focal depth of 3.8 km with no corresponding surface faults. The strike/dip/rake angles for the two nodal planes are 205°/54°/96° and 15°/36°/82°, respectively. With the analyses of coseismic deformation of the surface obtained from InSAR measurements, together with the information of relocated hypocenters for a small number of aftershocks, it is concluded that a northwest-dipping nodal plane corresponds well to the source fault. The fault is suggested to have a length of about 2.8 km and a depth range of 2–5 km, and the centroid of the earthquake is located at 104.48°E and 30.71°N. Furthermore, multiple pieces of evidence indicate that this earthquake is partly driven by the overpressure effect associated with the adjacent natural gas packets, which is similar to several other moderate natural earthquakes in Sichuan Basin.  相似文献   

17.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault...  相似文献   

18.
In this article,we use the CAP method to invert the focal mechanism of Xinyuan-Hejing M S6. 6 earthquake on June 30,2012. Our result shows that the best double couple solution of the M S6. 6 event is 299°,68° and 164° for strike,dip and rake angles respectively. The other nodal plane is 35°,75° and 23°. The azimuth and dip angle of the P-axis are 166°and 5°,those of the T-axis are 258° and 26°. The moment magnitude is 6. 3. The estimated focal depth is about 21 km. The predominant rupture direction of this seismic sequence is NWW. The dip angles are between 60° and 90°. The rake angles are in the majority of ± 180°± 30°. The predominant strike of the azimuthal angle of the P-axis is near NS and T-axis is near EW. Preliminary analysis indicates that nodal plane I is the seismogenic fault,which is a NWW-trending,nearly upright left-lateral strike-slip fault.The displacement property,the principal compressive stress of this M S6. 6 earthquake and the P-axis preponderant orientation of this seismic sequence agree with the characteristics of the tectonic stress field of the focal area and its surroundings.  相似文献   

19.
From 14:28 (GMT+8) on May 12th,2008,the origin time of MS8.0 Wenchuan earthquake,to December 31th,2008,more than 10 000 aftershocks (M≥2.0) had been recorded by the seismic networks in Sichuan and surrounding areas.Using double difference algorithm,the main shock and more than 7 000 aftershocks were relocated.The aftershocks distribute about 350 km long.The depths of aftershocks are mainly between 10 km and 20 km.The average depth of aftershocks is about 13 km after relocation.In the southwest,the distribut...  相似文献   

20.
Complete records of more than 3,000 earthquake events in the Shanxi, Wenzhou reservoir earthquake sequence were recorded from August to November,2014 by the high-density,high-resolution monitoring stations of the Zhejiang Regional Digital Seismic Network and the reservoir earthquake monitoring network,with a maximum magnitude of M4. 2. Based on 3-D epicenter location, focal mechanism solutions, and in combination with the geological and tectonic characteristics of the reservoir area,the earthquake sequence is discussed in this paper. The linear fitting of the Hypo SAT location results show that the main shock occurred in the NW trending fault and the earthquake sequence is concentrated in bands along the active faults,with a strike of305 °,dipping SW with dip angle of 85 °. By using P-wave first motion symbols, we obtained the average focal mechanism of M ≥ 3. 5 earthquakes,with a strike 308 ° and dip 84 ° for nodal plane II. The field geological survey and research show that the strike,dip and rake of nodal plane II are roughly consistent with the occurrence of the Shuangxi-Jiaoxi fault. The comprehensive analysis reveals that the NW-trending Shuangxi-Jiaoxi fault is the seismogenic structure of the earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号