首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal Fault of the 1999 Datong Ms5.6 Earthquake in Shanxi Province   总被引:1,自引:0,他引:1  
Several earthquakes with Ms≥5.0 occurred in the Datong seismic region in 1989,1991 and 1999,The precise focus location of the earthquake sequence was made by the records of the remote sensing seismic station network in Datong.Using that data together with macro-intensity distribution and focal mechanism solutions,we analyze the difference among three subsequences.The results show that the focal fault of the 1999 Ms 5.6 earthquake was a NWW-trending left-lateral strike-slip fault.It is 16km long and 12km wide.It developed at the depth of 5km and is nearly vertical in dip.The two previous earthquake subsequences,however,were generated by activity along NNE-trending right-lateral strike-slip fault.It can be found that the rupture directioin of the 1999 earthquake has changed.It is generally found that a rupture zone has more than two directions and has different strength along these two directions.The complicate degree of focal circumstance is related to the type of earthquake sequences.There is the NE-trending Dawangcun fault and the NW-trending Tuanbu fault in the seismic region,but no proof indicates a connection between focal faults and these two tectonic faults.The feature that focal faults of three subsequences are strike-slip is different from that of the two tectonic faults.It is suggested that the 1999 earthquake subsequence was possibly generated by a new rupture.  相似文献   

2.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault...  相似文献   

3.
The Yajiang earthquake sequence in 2001, with the major events of Ms5.1 on Feb. 14 and of Ms6.0 on Feb.23, are significant events in the Sichuan region during the last 13 years. Eighty-eight earthquakes in the sequence with at least 5 distinct onset parameters for each recorded by the Sichuan Seismic Network in the period of Jan. 1 through June 30,2001 were chosen for this study. The events are relocated and the focal mechanism is derived from P-wave onsets for 13 events with relatively larger magnitudes. The focal depth of all earthquakes fall between a range of 2km to 16km, with dominant distribution between 9km to 11km. Theforeshocks, the Ms5.1 earthquake and the Ms6.0 earthquake and their aftershocks are all located close to the Zihe fault and the dominant epicentral distribution is in NW direction, identical to that of the fault. The fracture surface of the focal mechanism is determined in accordance to the mass transfer orientation in the recent earth deformation field in the Yajiang region. The P axes of the principal compressive stress in focal mechanism solutions of the 13 events show bigger vertical components, and the horizontal projection trending SE. The earthquakes are of left-lateral, strike-slip normal, and normal strike-slip types. The rupture surface of most earthquakes strike NW-SE, dipping SW. Based on the above information, we conclude that the Zihe fault that crosses the earthquake area, striking NW and dipping SW, is the seismogenic fault for the Yajiang earthquake sequence.  相似文献   

4.
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning’er M6.4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning’er M6.4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40km and the width is 30km, concentrated obviously at the lateral displacement area between the Pu’er fault and the NNE-trending faults, with the majority occurring on the Pu’er fault around the main shock. The depths of aftershocks are from 2km to 12km, and the predominant distribution is in the depth of 8~10km. The mean depth is 7.9km. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu’er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu’er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.  相似文献   

5.
On the southeast coast of Fujian and its adjacent area, the NE-trending Changle-Zhao′an fault zone and several NW-trending faults that are genetically related to the former are well developed. With micro-relief analysis, the paper deals with the Quaternary activity of the faults and the tectonic stress field since the late Pleistocene in this region. The results indicate that the micro-relief of the NE-trending Changle-Zhao′an fault zone and the genetically related NW-trending faults is characterized by vertical and horizontal movements since the Quaternary; the faults in the region have undergone two active stages since the Quaternary, i.e. early Quaternary and late Pleistocene; since the late Pleistocene, the movement of the NE-trending faults showed a right-lateral strike-slip, while that of NW-trending faults a left-lateral strike-slip, indicating a NWW-SEE oriented horizontal principal stress of the regional tectonic stress field  相似文献   

6.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

7.
The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China.This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area.We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method.The inversion results are as follows:the strike is 21.6°,the dip angle is 89.5°,the slip angle is 170°,the fault length is about 160 km,the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km.This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust.Moreover,the surface seismic fault,intensity distribution of the earthquake,earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result.  相似文献   

8.
In this study,data from the Xinjiang regional network and IRIS shared global stations are used to relocate the Akto M_S6. 7 earthquake sequence on November 25,2016 by using double difference location method. Three earthquakes of M_S4. 8,M_S6. 7 and M_S5. 0 are inverted by using the g CAP method,and the focal mechanism solutions are obtained.According to the results of relocating,the location of the main shock is 39. 22°N,73. 98°E,the distribution of the earthquake sequence is about 70 km in length,and the focal depth is mainly within the range of 5-20 km. The plane and depth profiles of the earthquake sequence show that aftershocks extended in SEE direction after the main shock and the dip angle of fault plane is steep. Focal mechanism results show that the three earthquakes are characterized by strike-slip movement. Based on the results of field geological investigation,it is inferred that the seismogenic fault of the Akto earthquake is Muji fault,which is located at the northernmost end of the Kongur extensional system.The possible cause of this earthquake is that the Indian Plate continues to push northward,and during this compression process,the Indian Plate is affected by the clockwise rotation of the Tarim basin,which causes the accumulation of right-lateral action of the Muji fault,resulting in this earthquake.  相似文献   

9.
We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M≥2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan fault zone. In the relocation process, we added seismic data from portable seismic sta-tions close to the shocks to constrain focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south, with a large strike-slip component in the north.  相似文献   

10.
The mainshock and aftershocks of the Hutubi MS6.2 earthquake on December 8, 2016 were relocated by applying the double difference method, and we relocated 477 earthquakes in the Hutubi region.The earthquake relocation results show that the aftershocks are distributed in the east-west direction towards the north side of the southern margin of the Junggar Basin fault, and are mainly distributed in the western region of the mainshock. The distance between the mainshock after relocation and the southern margin of the Junggar Basin fault is obviously shortened. Combined with the focal mechanism and the spatial distribution of the mainshock and aftershocks, it is inferred that the southern margin of the Junggar Basin fault is the main seismogenic structure of the Hutubi earthquake.  相似文献   

11.
The focal mechanism solutions of the Wenchuan earthquake(MS8.0) of May 12,2008 and some of its aftershocks occurring up to December 10,2008 are determined with lower semisphere of equal-projection and first motion sign data of P waves from regional and distant stations.The focal mechanism solutions of the MS8.0 Wenchuan earthquake are:Nodal planeⅠ:strike 5°,dip angle 48°,slip angle 39°; Nodal planeⅡ:strike 247°,dip angle 62°,slip angle 131°; P axis azimuth 309°,plunge 8°,T axis azimuth 208°,plunge 54°,B axis azimuth 44°,plunge 35°.Combining geological tectonics and spatial distribution of aftershocks,nodal plane II can be identified as a seismogenic fault.According to focal mechanism solutions,the fault activity that triggered the huge earthquake is reverse thrusting.The main rupture surface is S67° W,basically identical to the fault strike on which the earthquake occurred.The main compression stress P axis is N51°W,which is basically the same as the direction of the regional tectonic stress field.According to the results of focal mechanism solutions of aftershocks,the aftershocks occurring in the southern and northern sections of the Longmenshan fault zone have predominant orientations and are obviously different.For the main shock and the early aftershocks occurring on the southern section of the Longmenshan fault,the rupturing is mainly characterized by reverse-dip slip with some strike-slip,and over time,the aftershocks migrated towards the northern section.The rupturing in the source is mainly characterized by strike-slip with some reverse-dip slips.The stress field is controlled by the main shock stress field in the southern section of the Longmenshan tectonic zone,while it is controlled by the main shock stress field and regional stress field in the northern section of the Longmenshan tectonic zone.  相似文献   

12.
The Akto M_S6. 7 earthquake occurred near the western end of the Muji fault basin in the top of the Pamir syntaxis. The main shock of this earthquake is complicated and the focal mechanism solutions based on the seismic wave inversions are different. Based on the Sentinel-1 SAR data,the coseismal deformation field of the earthquake is obtained by In SAR technique. Based on the elastic half-space dislocation model,the geometrical parameters and the slip distribution model are determined by nonlinear and linear inversion algorithms. The results show that the distributed slip model can well explain the coseismic deformation field. The earthquake includes at least two rupture events,which are located at 7 km(74. 11°E,39. 25°N)and 33 km(74. 49°E,39. 16°N)east from the epicenter according to the CENC. The deformation field caused by the earthquake shows a symmetry distribution,with the maximum LOS deformation of 20 cm. The main seismic slip is concentrated in the 0-20 km depth,and the maximum slip is 0. 84 m. The seismic fault is the Muji fault,and this earthquake indicates that the northeastward push of the Indian plate is enhanced.  相似文献   

13.
On October 12~(th),2019,a M_S5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-strong earthquakes are relatively active. The highest intensity of this earthquake is estimated up to Ⅵ besides the isoseismic line showed an ellipse shape with a long axis trend in the NW direction.The aftershocks are not evenly distributed. The parameters of the focal mechanism solutions are: strike 346°,dip 85°,rake 19° for the nodal planeⅠ,and strike 254°,dip 71°,rake 175° for the nodal planeⅡ. The type of the coseismic fault is strikeslip. After analyzing these results above and the active faults near the epicenter,we get that the nodal planeⅠ is interpreted as the coseismic rupture plane and the BamaBobai Fault is a seismogenic structure of M_S5.2 Beiliu earthquake.  相似文献   

14.
By means of the hypocenter distribution and focal mechanism of Wuding MS=6.5 earthquake sequence occurred in 1995, the space orientation and activity characteristics of focal fault of Wuding earthquake have been studied from the three-dimensional space-time process. The results indicate that the focal fault of Wuding earthquake is a subsurface, NWW-trending, upright and right-lateral strike slip fault which is consistent with the intensity distribution in the meizoseismal region. Although the large-scale NS-trending Tanglang-Yimen active fault passes through the earthquake region, it is irrelevant to the MS=6.5 Wuding main earthquake. Since the relationship between the strong earthquake and the shallow geological active fault can not be determined, the crustal deep structure should be studied. The method proposed in the paper can be used to distinguish the focal fault in the deep crust.  相似文献   

15.
The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on-the-spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left-lateral dislocation of buildings along the Songpinggou fault, the NWtrending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure.  相似文献   

16.
On October 27, 2001, a large earthquake with Ms6.0, named the Yongsheng earthquake, occurred along the Jinshajiang segment of Chenghai fault in Yongsheng County, Yuunan Province. It is the largest event to occur along the Chenghai fault in the last 200 years. The seismo-geological survey shows that the seismogenic fault, which is the Jinshajiang segment of Chenghal fault, takes left-lateral strike-slip as its dominant movement pattern. According to differences in vertical motion, motion time, landforms and scales, the Chenhai fault can be divided into eight segments. The Jinshajiang segment has a vertical dislocation rate of 0.4mm/a, far lower than the mean rate of the Chenghai fault, about 2.0 mm/a. It‘ s deduced that the two sides of Jinshajiang segment “stuck“ tightly and hindered the strike-slip of the Chenghai fault. The strong earthquake distribution before this event shows that the Jinshajiang segment was in the seismic gap. The Chenghai fault, as a boundary of tectonic sub-blocks, makes the Northwest Yunnan block and the Middle Yunnan block move clockwise, and their margins move oppositely along the Chenghai fault. In the motion process of the Chenghai fault, structural hindrance and the seismic gap of strong earthquakes are propitious to the concentration and accumulation of structure stress. As a result, the Yongsheng Ms6.0 earthquake occurred. The Sujiazhuang-Shangangfu segment is similar to the Jinshajiang segment with a low vertical motion rate of 0.3 mm/a and in the seismic gap. So it‘s postulated that the segment may become a new structure hindrance, and the Yongsheng Ms6.0 earthquake may trigger the occurrence of future large earthquakes along this segment.  相似文献   

17.
In this paper,the focal mechanisms of the fore-main-after shocks of the 1989 Datong-Yanggao earthquake are determined by fitting Pnl and SH waveforms,and the earthquake processes and seismotectonics are inferred.The results show that the fore-main-after shocks occurred on a composite fault plane,The fault motion at the shallow part is right-lateral strike-slip with mechanisms:strike 201,dip 75,rake 191; at the deeper part,the fault movement is strike 201,dip 58,rake 222.The epicentral area is subject to a ENE-WSW horizontal compression and a NNW-SSE extension which is consistent with the tectonic stress orientation of North China.The P-axis at greater depth has an azimuth of 54.5 and a plunge of 51.The relatively large P-axis plunge in depth corresponds with the great depressive deformation in this area.In addition,the similarities and differences between the Datong-Yanggao earthquakes and general graben-associated earthquakes are discusses.  相似文献   

18.
The coseismic surface rupture zone of the seismogenic fault of the MS7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°~320°, in general. An approximately 2km-long en echelon tension fissure zone was found at Longbao town. The main rupture in the northern part is about 16km long, about 9km long in the middle part, and about 7km long in the southern part, with a total length of 34km. Each of the main ruptures consists of a series of en echelon sub-ruptures represented by a series of compression bulges alternating with tension fissures or by en echelon fissures. The rupture at Changusi, the southernmost of the ruptures, is characterized by vertical displacement, with a value of 50cm. The rupture zone shows left-lateral strike-slip characteristics. The maximal horizontal slip is on the northern main rupture, with a value of 1.8m.  相似文献   

19.
The great Haiyuan earthquake occurred at 20:06:09 on December 16,1920 in the south of Ningxia Hui Autonomous Region.The magnitude of this earthquake is 8.5,listed as one of the three greatest earthquakes to ever occur in Chinese continent.This devastating earthquake killed about 230,000 people according to previous reports.Recent studies show that total casualties may have reached 270,000.The study of this earthquake using modern scientific and technological methods is the first in the history of earthquake research in China.Significant breakthroughs took place in the middle of last century.The earthquake surface rupture,with 200km in length and prominent left-lateral strike-slip displacement,was discovered.The first monograph on the Haiyuan earthquake was published.In the 1980s,innovative large-scale geological mapping technology for active faults was developed during studies on the Haiyuan earthquake surface ruptures,with the publication of the first large-scale map of the Haiyuan active fault.Quantitative studies were carried out on the fine structure and geometry of the fault zone,Holocene slip rate,co-seismic displacement,paleoearthquake and recurrence intervals and future earthquake risk assessment.The innovative studies also included rupture propagation along the strike-slip fault,evolution of pull-apart basins,determination of total displacement of the strike-slip fault,transition equilibrium between strike-slip displacement along its major strand and crustal shortening at the end of the strike-slip fault,and the mechanism of deformation on Liupan Mountain.On the occasion of the 90th anniversary of the Haiyuan earthquake,careful retrospect of scientific progress achieved during the recent 20 years would be helpful in providing further direction in the study of active faults and earthquake hazard reduction.While taking this occasion to remember those lost by the Haiyuan earthquake,we aim to make greater contributions to earthquake prediction and seismic hazard reduction.  相似文献   

20.
An earthquake with MS4.6 occurred at 17:08 p.m., May 22, 2016 in Chaoyang County, Liaoning Province. We used the P-wave first motion method, TDMT method, and CAP method to determine the focal mechanisms and the PTD method and sPn-Pn method to determine the focal depth. The focal mechanism results of the three methods are consistent. The depth results of the CAP method, PTD method and sPn-Pn method are close. We used the double difference location method to relocate earthquakes in 2009-2016, and obtained the strikes and dip angles of the small earthquake distributions with the help of simulated annealing algorithm and gauss Newton algorithm fitting. According to the focal mechanism results, the depth results, the characteristics of small earthquake distributions and the structural characteristics of the source area, the seismogenic fault strike is NEE and the main pressure force direction is NNW. The earthquake focal mechanism is for a normal fault type with a little left-lateral strike slip motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号