首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   22篇
  国内免费   3篇
测绘学   6篇
大气科学   26篇
地球物理   63篇
地质学   82篇
海洋学   24篇
天文学   33篇
自然地理   46篇
  2022年   6篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   15篇
  2015年   17篇
  2014年   10篇
  2013年   18篇
  2012年   15篇
  2011年   14篇
  2010年   19篇
  2009年   15篇
  2008年   12篇
  2007年   10篇
  2006年   9篇
  2005年   7篇
  2004年   9篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1959年   1篇
排序方式: 共有280条查询结果,搜索用时 296 毫秒
1.
Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model the erosion and consequent retreat of streambanks. However, modeling streambank retreat has many important applications, including the design and assessment of mitigation strategies for stream revitalization and stabilization. In order to highlight the current complexities of modeling streambank retreat and to suggest future research areas, this paper reviewed one of the most comprehensive streambank retreat models available, the Bank Stability and Toe Erosion Model (BSTEM), which has recently been integrated with several popular hydrodynamic and sediment transport models including the Hydrologic Engineering Center's River Analysis System (HEC‐RAS). The objectives of this paper were to: (i) comprehensively review studies that have utilized BSTEM and report their findings, (ii) address the limitations of the model so that it can be applied appropriately in its current form, and (iii) suggest directions of research that will help make the model a more useful tool in future applications. The paper includes an extensive overview of peer reviewed studies to guide future users of BSTEM. The review demonstrated that the model needs further testing and evaluation outside of the central United States. Also, further development is needed in terms of accounting for spatial and temporal variability in geotechnical and fluvial erodibility parameters, incorporating subaerial processes, and accounting for the influence of riparian vegetation on streambank pore‐water pressure dynamics, applied shear stress, and erodibility parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
We propose a physical model for the high-frequency (>1 Hz) spectral distribution of seismic power generated by debris flows. The modeled debris flow is assumed to have four regions where the impact rate and impulses are controlled by different mechanisms: the flow body, a coarser-grained snout, a snout lip where particles fall from the snout on the bed, and a dilute front composed of saltating particles. We calculate the seismic power produced by this impact model in two end-member scenarios, a thin-flow and thick-flow limit, which assume that the ratio of grain sizes to flow thicknesses are either near unity or much less than unity. The thin-flow limit is more appropriate for boulder-rich flows that are most likely to generate large seismic signals. As a flow passes a seismic station, the rise phase of the seismic amplitude is generated primarily by the snout while the decay phase is generated first by the snout and then the main flow body. The lip and saltating front generate a negligible seismic signal. When ground properties are known, seismic power depends most strongly on both particle diameter and average flow speed cubed, and also depends on length and width of the flow. The effective particle diameter for producing seismic power is substantially higher than the median grain size and close to the 73rd percentile for a realistic grain size distribution. We discuss how the model can be used to estimate effective particle diameter and average flow speed from an integrated measure of seismic power. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
3.
4.
In contrast to active tectonic settings, little is known about the potential feedback between surface processes and climate change in tectonically inactive cratonic regions. Here, we studied the driving forces of erosion and landscape evolution in the Kruger National Park in South Africa using cosmogenic nuclide dating. 10Be‐derived catchment‐wide erosion rates (~2 and ~10 mm ka?1) are similar in magnitude to erosion and rock uplift elsewhere in South Africa, suggesting that (1) rock uplift is solely the isostatic response to erosion and (2) the first‐order topography is likely of Cretaceous age. The topographic maturity is promoted by widespread exposure of rocks resistant to erosion. Our data, however, suggest that local variations in rock resistance lead to transient landscape changes, with local increases in relief and erosion rates.  相似文献   
5.
An Early Permian glacial diamictite forms a distinctive unit within the Falkland Islands sedimentary succession and two aspects of its significance have recently been serendipitously enhanced. Fossil discoveries in exotic limestone clasts bear on palaeogeography, whilst a series of mineral‐exploration borehole cores have allowed a detailed study of the sedimentary record of deglaciation that followed deposition of the diamictite. Statistical analysis of reflectance and XRF core‐scanning data has identified likely Milankovitch periodicities and enabled tentative time‐scale modelling. The ‘icehouse to greenhouse’ transition appears to have spanned approximately 1.2 million years, with waning cycles of re‐advance superimposed on overall glacial retreat. The new results play into a long‐debated geological paradox: although the Falkland Islands are now proximal to the South Atlantic coastline of South America, their geology bears an uncanny resemblance to that of the Cape Fold Belt and Karoo Basin in South Africa. This puzzled the geological pioneers, but became readily explicable when first continental drift and then plate tectonics were invoked to reconstruct the break‐up of the Gondwana supercontinent—although the details remain controversial. One of the key stratigraphical correlation levels throughout the major fragments of southern Gondwana—South Africa, South America, Antarctica and Australia—is the glacigenic deposit left behind by the extensive, Late Carboniferous to Early Permian regional glaciation; in the Falkland Islands it is designated the Fitzroy Tillite Formation.  相似文献   
6.
Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.  相似文献   
7.
Analysis of four historical bathymetric surveys over a 132-year period has revealed significant changes to the morphology of the San Francisco Bar, an ebb-tidal delta at the mouth of San Francisco Bay estuary. From 1873 to 2005 the San Francisco Bar vertically-eroded an average of 80 cm over a 125 km2 area, which equates to a total volume loss of 100 ± 52 million m3 of fine- to coarse-grained sand. Comparison of the surveys indicates the entire ebb-tidal delta contracted radially, with the crest moving landward an average of 1 km. Long-term erosion of the ebb-tidal delta is hypothesized to be due to a reduction in the tidal prism of San Francisco Bay and a decrease in coastal sediment supply, both as a result of anthropogenic activities. Prior research indicates that the tidal prism of the estuary was reduced by 9% from filling, diking, and sedimentation. Compilation of historical records dating back to 1900 reveals that a minimum of 200 million m3 of sediment has been permanently removed from the San Francisco Bay coastal system through dredging, aggregate mining, and borrow pit mining. Of this total, ∼54 million m3 of sand-sized or coarser sediment was removed from central San Francisco Bay. With grain sizes comparable to the ebb-tidal delta, and its direct connection to the bay mouth, removal of sediments from central San Francisco Bay may limit the sand supply to the delta and open coast beaches.  相似文献   
8.
The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M?>?2 (up to M4.4) that occurred during the 24?h preceding the mainshock. The foreshocks occurred along a north?Csouth trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15?s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120?km from the south end of the Elsinore fault zone north of the US?CMexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50?km long, as well as a 10?km north?Csouth aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific?CNorth America plate motion from the Gulf of California in the south into the southernmost San Andreas fault system to the north. We propose that the location of the 2010 El Mayor-Cucapah, as well as the 1992 Landers and 1999 Hector Mine earthquakes, may have been controlled by the bends in the plate boundary.  相似文献   
9.
We undertake detailed near-field numerical modelling of the tsunami generated by the 15 July 2009 earthquake (Mw 7.8) in Fiordland, New Zealand. High resolution bathymetry and topography data at Breaksea and Dusky Sounds, and Chalky and Preservation Inlets are derived mostly from digitised New Zealand nautical charts, Shuttle Radar Topographic Mission (SRTM) 3 arc-second data, and General Bathymetric Chart of the Ocean (GEBCO) 30 s data. A combination of continuous and campaign Global Positioning System (GPS), satellite radar (ALOS/PALSAR InSAR images) and seismology data are used to constrain the seafloor deformation for the initial tsunami condition. This source model, derived independently of DART observations, provides an excellent fit to observed tsunami elevations recorded by DART buoy 55015. The model results in the near field show maximum tsunami elevations in the range 0.5–2.0 m inside the sounds and inlets with maximum flow speeds of 3.0 m/s. Along the open coast, maximum tsunami elevations reach 2.0 m. The high flow speeds through the inlets may change the inlet stratifications and water mass inside the sounds. Media reports and field reconnaissance data show some tsunami evidence at Cormorant Cove, Duck and Goose Coves, and Passage Point.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号