首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aims at looking for the characteristic patterns of mesospheric wind over the geomagnetic storm times. For this purpose, the geomagnetic storms preceded by a sudden commencement (SSC) have been selected from January 1995 to April 1999. By using the onset of SSC as the timing mark, a superposed epoch analysis has been performed on the available neutral wind data measured with medium frequency (MF) radars at Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). In doing so, the length of time chosen for the superposed analysis is from 7 days before the SSC onset to 21 days after the onset; subsets of wind data are superimposed for summer and winter months, respectively. Then with harmonic analysis on the superposed winds the mean winds in both summer and winter months have been obtained. Concerning mean wind characteristics, some interesting details are the reversal heights of the summer zonal winds, which is 79–80 km at Yamagawa and 84 km at Wakkanai. Strong wavy structures with 2–4 days period are observed at both Yamagawa and Wakkanai in both summer and winter. As for storm effects, significant enhancement of eastward wind is found 5 days after SSC onset at both Yamagawa and Wakkanai in winter. Moreover, the northward wind turns southward at Wakkanai 2 days after the onset of SSC, and the southward wind lasts for several days thereafter. In summer months, the post-storm enhancement tends to be small and mainly in the eastward wind at both Yamagawa and Wakkanai.  相似文献   

2.
T. Toba  T. Ohta 《水文研究》2008,22(14):2634-2643
To elucidate the factors involved in interception loss, we conducted experiments in which we measured environmental variables such as rainfall intensity, forest structure, and weather conditions. An artificial forest consisting of 24 vinyl trees was used to examine the influences of forest structure and rainfall conditions on interception loss. The interception rate was higher at higher plant area index (PAI) values and wind speeds and lower with greater rainfall intensity. We confirmed the factors affecting interception loss by using an interception model based on the tank model. The artificial forest simulations provide new evidence that interception loss is influenced by the PAI, rainfall intensity, saturation deficit, and wind speed. The effect of the saturation deficit on the interception rate was unclear from the experimental results, but the single‐tank model revealed that wind speed strongly influences the effects of the saturation deficit on interception loss. Thus, whereas interception loss was not significantly affected by the saturation deficit at low wind speeds, it increased significantly with the saturation deficit under windy conditions. The model simulation also showed the sensitivity of each factor with regard to the interception rate. The sensitivity of rainfall intensity decreased as the PAI increased, and the sensitivity of the saturation deficit increased as the wind speed increased. The experiments and model calculations clarified the main elements affecting interception loss and their sensitivities. Compared with previous studies on interception loss, this study revealed a positive relationship between the PAI and interception loss, a negative exponential relationship with rainfall intensity, and the effects of the saturation deficit on interception loss. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

4.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

5.
Ground temperature, pressure and wind speed monthly averages in the area of the Italian Station at Terra Nova Bay, Antarctica, were analyzed for the period 1987–1991 by means of a network of nine AWS (automatic weather stations). Spatial configurations of temperature show a well-defined, relatively warm island in the area of Terra Nova Bay, between Drygalsky and Campbell ice tongues, throughout the year. A second warm island is present to the north along the coast, between Aviator and Mariner ice tongues, for most of the year. From February to March a rapid drop in temperature is observed at all stations. A strong thermal gradient develops during February, March, April and October, November, December, between the coastal region and inner highlands. The baric configuration follows the elevation of the area. Annual average pressure and temperature as functions of stations altitude show linear trends. Severe katabatic wind episodes are recorded at all stations, with wind speed exceeding 25 ms–1 and direction following the orographic features of the inner areas. Co-occurrences of these episodes were observed for stations located along stream lines of cold air drainage. The autocorrelation function of maximum wind speed time series shows wind persistence of 2–3 days and wind periodicity of about one week.  相似文献   

6.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

7.
The nature of tsunami sources is reviewed, including source duration, displacement amplitudes, and areas and volumes of selected past earthquakes, slumps and slides that have or may have generated a tsunami. This review shows that the velocity of spreading of submarine slides and slumps (1–100 m/s) can be comparable to the long wavelength tsunami velocity (30–140 m/s for water depth 100<h<2000 m). In contrast, typical velocities of spreading dislocations during most earthquakes are one order of magnitude larger (2–3 km/s). Other significant differences between earthquake and slide and slump sources are that the balance of the total uplifted material in the case of slides is essentially zero, while for earthquakes it can be considerable, and that the vertical displacements for slides and slumps, per unit area of their horizontal projection, can be orders of magnitude larger than during earthquakes. This can result in high concentrations of the total change in the potential energy of fluid, above the source, over much smaller areas than during earthquakes.  相似文献   

8.
This paper revealed the climatic change characteristics of fog and haze of different levels over North China and Huang-Huai area(NCHH).It was found that the haze-prone period has changed from winter into a whole year,and the haze days(HD)in winter have increased significantly.The foggy days(FD)are half of HD.There are little difference on the number of days and trends of fog at various levels.The HD and FD show no obvious positive correlation until the 1980s.Fog has larger spatial scale,showing more in the south than in the north.Haze occurs mainly around large cities with a discrete distribution.In the background of weakened East Asian Winter Monsoon(EAWM)and sufficient particulate matter,the negative correlation between haze and wind speed is weakened,but the positive correlation between haze and moisture conditions(precipitation and humidity)is significantly strengthened.In recent years,small wind and variability appear frequently.Meanwhile,as the stable source and strong moisture absorption of the aerosol particles,the moisture condition becomes one key control factor in the haze,especially wet haze with less visibility.In contrast,the FD presents a stable positive correlation with precipitation and relative humidity,but has no obvious negative correlation with wind speed.  相似文献   

9.
The effect of offshore coral reefs on the impact from a tsunami remains controversial. For example, field surveys after the 2004 Indian Ocean tsunami indicate that the energy of the tsunami was reduced by natural coral reef barriers in Sri Lanka, but there was no indication that coral reefs off Banda Aceh, Indonesia had any effect on the tsunami. In this paper, we investigate whether the Great Barrier Reef (GBR) offshore Queensland, Australia, may have weakened the tsunami impact from the 2007 Solomon Islands earthquake. The fault slip distribution of the 2007 Solomon Islands earthquake was firstly obtained by teleseismic inversion. The tsunami was then propagated to shallow water just offshore the coast by solving the linear shallow water equations using a staggered grid finite-difference method. We used a relatively high resolution (approximately 250 m) bathymetric grid for the region just off the coast containing the reef. The tsunami waveforms recorded at tide gauge stations along the Australian coast were then compared to the results from the tsunami simulation when using both the realistic 250 m resolution bathymetry and with two grids having fictitious bathymetry: One in which the the GBR has been replaced by a smooth interpolation from depths outside the GBR to the coast (the “No GBR” grid), and one in which the GBR has been replaced by a flat plane at a depth equal to the mean water depth of the GBR (the “Average GBR” grid). From the comparison between the synthetic waveforms both with and without the Great Barrier Reef, we found that the Great Barrier Reef significantly weakened the tsunami impact. According to our model, the coral reefs delayed the tsunami arrival time by 5–10 minutes, decreased the amplitude of the first tsunami pulse to half or less, and lengthened the period of the tsunami.  相似文献   

10.
Estimates of spatial and temporal variations in suspended sand concentrations (SSC) made with a multi-transducer Acoustic Backscatter Sensor (ABS) under a repeated wave group over a mobile rippled bed in the wave research flume at the National Hydraulics Laboratory in Ottawa, Canada, reveal an number of complex and intriguing patterns. Ensemble averages of 8 nearly identical wave groups provided much more robust estimates of SSC and allowed a detailed examination of the wave group effects. The largest SSC near the bed (< 0.10 m) occurs in phase with the largest waves in the group. Above approximately 0.10 m elevation, SSC lags behind the near bed SSC by as much as 2–3 waves; introducing significant curvature (on a semi-log plot) to the SSC profile. The log linear segments of the SSC profile grow and decay systematically on the scale of the wave group. The range in lengths of log-linear profile segments ( 0.03–0.355 m) suggest that the boundary layer thickness also fluctuates throughout the passage of the wave group. Furthermore, there are significant variations in the patterns of SSC, which occur under the largest and smallest waves in the group. Under the largest waves vertical bands of alternating high and low SSC produce an intra-wave modulation in the upper water column ( 0.075–0.30 m). The equivalent horizontal excursion of these bands scales to the ripple length. Under the smaller waves the intra-wave modulation of the SSC disappears and is replaced by temporally homogenous suspension that expands vertically through several individual wave cycles. The former pattern of homogenous suspension appears to be associated with growth of a boundary layer due to the persistent uni-directional horizontal flow during this part of the group together with the persistence of antecedent bed generated turbulence and vorticity which maintains the suspension. The latter pattern of bands of high and low SSC indicates a strong temporal and spatial constraint on the SSC (phase coupling) induced by the presence of the bedforms which may be enhanced by strong reversals in both flow and vorticity under the large waves in the group.  相似文献   

11.
The internal sediment release is a key factor controlling eutrophication processes in large,shallow lakes.Sediment resuspension is associated with the wave and current induced shear stress in large,shallow lakes.The current study investigated the wind field impacts on sediment resuspension from the bottom at Meiliang Bay of large,shallow Lake Taihu.The impacts of the wind field on the wave,current,and wave-current combined shear stresses were calculated.The critical wind speed range was 4–6 m/s after which wave and current shear stress started to increase abruptly,and onshore wind directions were found to be mainly responsible for greater shear stress at the bottom of Lake Taihu.A second order polynomial fitting correlation was found between wave(R^2 0.4756)and current(R^2 0.4466)shear stresses with wind speed.Wave shear stress accounted for 92.5% of the total shear stress at Meiliang Bay.The critical wave shear stress and critical total shear stress were 0.13 N/m^2 for sediment resuspension whereas the current shear stress was 0.019 N/m^2 after which suspended sediment concentrations(SSC)increased abruptly.A second order polynomial fitting correlation was found between wave(R^2 0.739),current(R^2 0.6264),and total shear stress(R^2 0.7394)with SSC concentrations at Meiliang Bay of Lake Taihu.The sediment resuspension rate was 120 to 738 g/m^2/d during 4–6 m/s onshore winds while offshore winds contributed ≥ 200 g/m^2/d.The study results reveal the driving mechanism for understanding the role of the wind field in sediment resuspension while considering wind speed and direction as control parameters to define wave and current shear stresses.  相似文献   

12.
From the present submarine topography in the vicinity of the Krakatau Islands it is concluded that the focus of the large explosions was situated to the northwest of the present Rakata Island. The channel between Krakatau and Sebesi Islands was completely blocked by banks of volcanic material immediately after the eruptions, and it is suggested that this material was mainly lithic fragments.The explosion sequences of Krakatau are deduced from the records of sea-waves and air-waves observed at Jakarta. The large tsunami was caused by the most violent explosion, simultaneously with the largest air-waves. It is inferred that the origin of the tsunami was a sudden upheaval of the seawater due to a violent explosion and that the height of the tsunami near its source was 30–40 m. Energy of the explosion is estimated from analyses of the air-waves as one order of magnitude greater than that of the 1956 Bezymianny eruption; thus, the 1883 Krakatau eruption may have caused explosive removal of more than 10 km3 of material.The subsurface structure of Krakatau Islands after the 1883 eruption is deduced from gravity anomalies. It is concluded that at the bottom of the caldera there are deposits of low density in the shape of an inverted cone 8 km in diameter and 1 km in depth. From the residual gravity anomaly observed over the caldera, one can estimate the mass deficiency there. This allows estimates to be made as to the amount of ejecta. Although large uncertainties remain, these data indicate that explosive removal of material was the main process responsible for the disappearance of the northern half of the former Rakata (Krakatau) Island in the 1883 eruption.  相似文献   

13.
Numerical experiments were conducted to investigate the ocean's response to the precipitation. A squall line observed in TOGA COARE was simulated. The simulation reproduced some of the observed ocean responses to the precipitation, such as the formation of a fresh water layer, surface cooling and the variation of upper layer turbulent mixing. The precipitation-induced fresh layer can cause the vertical turbulent diffusivities to decrease from the surface to a depth of about 11–13 meters within a few hours. After the rainfall, the turbulence increases near the surface of the ocean due to the combined effect of increased shear and wind forcing, but decreases with depth due to the development of a stable layer. The main reason for the turbulence variation is the decrease in the vertical turbulence flux below the surface fresh layer because of increased static stability. Sensitivity experiments reveal that the sea-surface temperature increases faster after rainfall due to the formation of a shallow fresh water layer near the surface.  相似文献   

14.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   

15.
The work describes an intensive study of storm sudden commencement (SSC) impulses in horizontal (H), eastward (Y) and vertical (Z) fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of δH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to δH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The δZ at δC have a positive impulse as in δH. The ratio of δZ/δH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of δZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1) resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2) due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.  相似文献   

16.
利用长江上游最近30年(66个测站)蒸发皿蒸发量和最近50年(90个测站)的7种气象要素,分析了蒸发皿蒸发量的区域变化趋势和影响蒸发皿蒸发量变化的因素;针对7个水文站的年径流量变化,探讨了蒸发皿蒸发量变化后对水分循环的影响.结果表明,长江上游蒸发皿蒸发量的变化可以划分为三个分区,研究区域东西两侧(青藏高原和大巴山一带)为显著减少区,分别命名为RⅠ和RⅡ,中间(云贵高原北部到黄土高原南缘以及由二者包围的四川盆地一带)为显著增大区,命名为RⅢ区.影响区域蒸发皿蒸发量变化的原因各有不同,青藏高原一带(RⅠ区)蒸发皿蒸发量减少的原因可归结于太阳辐射强度和风动力扰动减弱所致.大巴山一带(RⅡ区)减少原因是太阳辐射强度、风动力扰动强度、湿度条件都在显著下降所引起的.云贵高原到四川盆地一带(RⅢ区)蒸发皿蒸发量增加是环境气温强烈升高,导致其上空大气水汽含量显著减少,大气很干燥,引发蒸发过程加强所致.蒸发皿蒸发量发生变化的直接后果就是导致水分循环强弱发生变化,对于RⅠ区,尽管蒸发皿蒸发量减少,由于降水量和径流量增加的作用,这一区域的水分循环有所加强.在RⅡ区,降水量、径流量和蒸发量都在减少,因此RⅡ区水分循环显著减弱.在RⅢ区,降水量和径流量同时减少,而蒸发量增大,水量消耗增大,因此RⅢ区水分循环有减弱趋势.  相似文献   

17.
Strong winds are a characteristic feature of UK upland areas. Despite this, understanding of aeolian processes in upland environments of the UK is limited. This paper presents direct measurements and observations of blanket peat erosion by wind action during a two week period of desiccation in the North Pennines, Northern England. A circular configuration of mass flux sediment samplers was used to collect peat eroded by wind action from 16 cardinal compass directions. Meteorological conditions (wind speed, wind direction, precipitation and temperature) were recorded by an automatic weather station set up adjacent to the site. Surface desiccation led to peat crust erosion and dust deflation. During short (≤1 hour) periods of precipitation, wind‐driven rainfall also caused erosion. Typically, dust flux rates were up to two orders of magnitude lower than recorded during periods of sustained wet weather. Measurements demonstrate the hitherto unreported rapid switch in process regime between wind‐driven rainfall and dry blow deflation in blanket peat environments. Dry blow processes of blanket peat erosion may become more important in UK upland areas if climate change promotes more frequent surface desiccation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The role of sector collapse in the generation of catastrophic volcanigenic tsunami has become well understood only recently, in part because of the problems in the preservation and recognition of tsunami deposits. Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128] modeled a tsunami produced by the c. 5,000 years BP collapse of the Sciara del Fuoco on the island volcano Stromboli. Although deposits associated with this event are generally lacking on the island, volcaniclastic breccias on the SE side of the island extending to an elevation above 120 m a.s.l. may have been generated by this tsunami. Deposits above 100 m are dominated by coarse breccias comprising disorganized, poorly sorted, nonbedded, angular to subangular lava blocks in a matrix of finer pyroclastic debris. These breccias are interpreted as a water-induced mass flow, possibly a noncohesive debris flow, generated as colluvial material on steep slopes was remobilized by the return flow of the tsunami wave, the run-up of which reached an elevation exceeding 120 m a.s.l. Finer breccias of subrounded to rounded lava blocks cropping out at 15 m a.s.l. are similar to modern high-energy beach deposits and are interpreted as beach material redeposited by the advancing tsunami wave. The location of these deposits matches the predicted location of the maximum tsunami wave amplitude as calculated by modeling studies of Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128]. Whereas the identification and modeling of paleo-tsunami events is typically based on the observation of the sedimentary deposits of the tsunami run-up, return flow may be equally or more important in controlling patterns of sedimentation.  相似文献   

19.
The 1994 Shikotan earthquake tsunamis   总被引:1,自引:0,他引:1  
The 1994 Shikotan earthquake was one of the greatest earthquakes in recent years with a magnitude ofM s 8.0. A tsunami survey was conducted by Russian and U.S. geophysicists from October 16–30, 1994, less than two weeks after the earthquake. The survey results and a numerical hindcast simulation are reported. Tsunami focusing effect at locations supposedly sheltered by the island chain is discussed. Based on the obtained data, tsunamis which attacked Shikotan Island are characterized as long waves (the order of 10–20 min wave period) with a positive leading wave. Possible consequences of the positive leading wave form are discussed in relation to the observed minimal destruction of beach vegetation and relatively small transport of marine sediment onto the shore. The high-quality tide-gage record in Malokurilskaya Bay indicates the occurrence of a 53 cm subsidence at the site.  相似文献   

20.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号