首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Our analysis of fog and haze observations from the surface weather stations in China in recent 50 years(from 1961 to 2011)shows that the number of fog days has experienced two-stage variations,with an increasing trend before 1980 and a decreasing trend after 1990.Especially,an obvious decreasing trend after 1990 can be clearly seen,which is consistent with the decreasing trend of the surface relative humidity.However,the number of haze days has demonstrated an increasing trend.As such,the role of reduction of atmospheric relative humidity in the transition process from fog into haze has been further investigated.It is estimated that the mean relative humidity of haze days is about 69%,lower than previously estimated,which implies that it is more difficult for the haze particles to transform into fog drops.This is possibly one of the major environmental factors leading to the reduction of number of fog days.The threshold of the relative humidity for transition from fog into haze is about82%,also lower than previously estimated.Thus,the reduction of the surface relative humidity in China mainly due to the increase of the surface temperature and the saturation specific humidity may exert an obvious impact on the environmental conditions for the formations of fog and haze.In addition,our investigation of the relationship between haze and visibility reveals that with the increase of haze days,the visibility has declined markedly.Since 1961,the mean visibility has dropped from 4–10to 2–4 km,about a half of the previous horizontal distance of visibility.  相似文献   

2.
In January 2013,a severe fog and haze event(FHE)of strong intensity,long duration,and extensive coverage occurred in eastern China.The present study investigates meteorological conditions for this FHE by diagnosing both its atmospheric background fields and daily evolution in January 2013.The results show that a weak East Asian winter monsoon existed in January2013.Over eastern China,the anomalous southerly winds in the middle and lower troposphere are favorable for more water vapor transported to eastern China.An anomalous high at 500 hPa suppresses convection.The weakened surface winds are favorable for the fog and haze concentrating in eastern China.The reduction of the vertical shear of horizontal winds weakens the synoptic disturbances and vertical mixing of atmosphere.The anomalous inversion in near-surface increases the stability of surface air.All these meteorological background fields in January 2013 were conducive to the maintenance and development of fog and haze over eastern China.The diagnosis of the daily evolution of the FHE shows that the surface wind velocity and the vertical shear of horizontal winds in the middle and lower troposphere can exert dynamic effects on fog and haze.The larger(smaller)they are,the weaker(stronger)the fog and haze are.The thermodynamic effects include stratification instability in middle and lower troposphere and the inversion and dew-point deficit in near-surface.The larger(smaller)the stratification instability and the inversion are,the stronger(weaker)the fog and haze are.Meanwhile,the smaller(larger)the dewpoint deficit is,the stronger(weaker)the fog and haze are.Based on the meteorological factors,a multi-variate linear regression model is set up.The model results show that the dynamic and thermodynamic effects on the variance of the fog and haze evolution are almost the same.The contribution of the meteorological factors to the variance of the daily fog and haze evolution reaches 0.68,which explains more than 2/3 of the variance.  相似文献   

3.
中国华北雾霾天气与超强El Ni?o事件的相关性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
2015年11—12月,全国接连发生七次大范围、持续性雾霾天气过程,其中,11月27日—12月1日的雾霾天气过程持续时间长达五天,成为2015年最强的一次重污染天气过程;12月19-25日重度雾霾再次发展,影响面积一度达到35.2万km~2.本文利用多种数据资料通过个例对比和历史统计详细分析了超强El Ni?o背景下雾霾天气频发的天气气候条件.其结果清楚表明:2015年11—12月欧亚中高纬度以纬向环流为主,东亚冬季风偏弱,使得影响我国的冷空气活动偏少,我国中东部大部地区对流层低层盛行异常偏南风,大气相对湿度明显偏大,并且大气层结稳定,对流层底层存在明显逆温.上述大气环流条件使得污染物的水平和垂直扩散条件差,因此在有一定污染排放的情况下,造成了重度雾霾天气过程的频发.由此,超强El Ni?o事件所导致的大尺度大气环流异常是我国中东部,尤其华北地区冬季雾霾天气频发的重要原因之一.  相似文献   

4.
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM–LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.  相似文献   

5.
Haze and fog are both low visibility events, but with different physical properties. Haze is caused by the increase of aerosol loading or the hygroscopic growth of aerosol at high relative humidity, whereas visibility degradation in fog is due to the light scattering of fog droplets, which are transited from aerosols via activation. Based on the difference of physical properties between haze and fog, this study presents a novel method to distinguish haze and fog using real time measurements of PM2.5, visibility, and relative humidity. In this method, a criterion can be developed based on the local historical data of particle number size distributions and aerosol hygroscopicity. Low visibility events can be classified into haze and fog according to this criterion.  相似文献   

6.
Cloud water interception (CWI) occurs when cloud droplets are blown against the forest canopy, where they are retained on the vegetation surface, forming larger water droplets that drip into the forest floor. CWI was measured from 1 October 1997 to 30 September 1999, on a first‐line tree heath (Erica arborea), at Bica da Cana, Madeira Island. Rainfall was corrected for wind‐loss effect and compared with throughfall and other climatological normals. The CWI depletion rate along a forest stand transect was also analysed during three distinct fog events in 2008. Cloud water was 28 mm day?1, corresponding to 68% of total throughfall and 190% of the gross precipitation. Cloud water correlates directly with monthly normals of fog days and wind speed and correlates inversely with the monthly air temperature normal. CWI has an exponential correlation with monthly relative humidity normal. Cloud water capture depletion along the stand shows a logarithmic decrease. Although a forest stand does not directly relate to a first‐line tree heath, this study shows that CWI is a frequent phenomenon in the Paul da Serra massif. Restoration and protection of high altitude ecosystems in Madeira should be a priority, not only for biodiversity, ecological and economical purposes but also for its role in regional water resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Fog is an atmospheric phenomenon that has important environmental consequences related to visibility, air quality and climate change on local and regional scales. The formation of radiation fog results from a complex balance between surface radiative cooling, turbulent mixing in the surface layer, aerosol growth by deliquescence and activation of fog droplets. During the ParisFog field experiment, out of 16 events forecasted for radiation fog, activated fog materialized in seven events, while in five other events the visibility dropped to 1–2 km but haze particle size remained below the critical size of activation. To better understand the conditions that lead to or do not lead to sustained fog droplet activation, we performed a comparative study of dynamic, thermal, radiative and microphysical processes occurring between sunset and fog (or quasi-fog) onset. We selected two radiation fog events and two quasi-radiation fog events that occurred under similar large-scale conditions for this comparative study. We identified that aerosol growth by deliquescence and droplet activation actually occurred in both quasi-fog events, but only during <1 h. Based on ParisFog measurements, we found that the main factors limiting sustained activation of droplets at fog onset in the Paris metropolitan area are (1) lack of mixing in the surface layer (typically wind speed <0.5 ms?1), (2) relative humidity exceeding 90 % throughout the residual layer, (3) low cooling rate in the surface layer (typically less than ?1 °C per hour on average) due to weak radiative cooling (0 to ?30 Wm?2) and near zero sensible heat fluxes, and (4) a combination of the three factors listed above during the critical phase of droplet activation preventing the transfer of cooling from the surface to the liquid layer. In addition, we found some evidence of contrasted aerosol growth by deliquescence under high relative humidity conditions in the four events, possibly associated with the chemical nature of the aerosols, which could be another factor impacting droplet activation.  相似文献   

8.
Precipitation is usually the primary source of water for the hydrological cycle in a semiarid area. However, dew occurs frequently and affects water circulation dramatically in the west of Jilin Province in China. Measurements of the amount of dew formed and precipitation were carried out from July 2012 to October 2013 in the Momoge Natural Reserve. The results indicated that moisture from primary precipitation in the summer originated from the East Asian monsoon and was affected by the atmospheric circulation in the middle and high latitudes of Eurasia in the winter. The dew amount was approximately 19.44 mm (approximately 5% of the total rainfall amount), consisting of the evapotranspiration in the local area and atmospheric moisture. Dew also supplies nutrients to the local vegetation. The maximum contribution of total nitrogen, total phosphorus, and potassium in unit corn area could reach 288.60, 27.46, and 291.63 mg/m2 in half a month, respectively. The wind speed, relative humidity, and lowest temperature were the primary factors that dramatically affected dew formation and amount. As an additional source of fresh water, dew not only had a positive impact on the ecosystem in arid and semiarid zones but also played an important role in the local water cycle and other ecological processes. This research has important implications for water circulation and land use management.  相似文献   

9.
Where sediment supply is unlimited, previous research suggests that a strong, positive relationship between wind speed and dust concentration exists at the event scale. This relationship can break down if sediment availability is limited or changes during an event. This paper explores the dynamic effects of sediment availability on the relationship between wind speed and dust concentration using data from nine high‐latitude dust events recorded in Iceland. Of these events, six showed a strong positive relationship between wind speed and dust concentration. For the remainder, the relationship breaks down periodically during the event due to changing surface moisture conditions and atmospheric humidity. Results suggest a need to understand how spatial and temporal changes in humidity, surface soil moisture, soil texture and threshold velocity interact and control sediment availability for dust emissions in all environments, including at high latitudes. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean–atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air–sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.  相似文献   

11.
A vertical sounding of severe haze process in Guangzhou area   总被引:1,自引:0,他引:1  
We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteorological factors of boundary layer and visibility from the perspective of dynamical and thermodynamic structures. Our results indicate that the boundary layer height shows significant daily changes, consistent with ground visibility variation. During the cleaning process, the boundary layer height exceeded 1 km; during severe haze, the height was only 500 m. Temperature gradient of 50–100 m, which was 30 h lag, was remarkably correlated with visibility, with the correlation coefficient of 0.77. High layer visibility(255 m) and low layer stability were significantly anticorrelation, and the maximum anticorrelation coefficient was up to-0.76 in cleaning days and-0.49 in haze days. In the related boundary layer meteorological factors, surface ventilation coefficient was linearly correlated with ground visibility, with the greatest correlation coefficient of 0.88. The correlation coefficients of boundary layer height, ground wind velocity, relative humidity and ground visibility were 0.76, 0.67, and-0.77, respectively. There was a strong correlation between different meteorological factors. The dominant meteorological factor during this haze process was surface ventilation coefficient. In the area without boundary layer height sounding, ground visibility and wind velocity could be used to estimate boundary layer height.  相似文献   

12.
The identification of the model discrepancy and skill is crucial when a forecast is issued. The characterization of the model errors for different cumulus parameterization schemes (CPSs) provides more confidence on the model outputs and qualifies which CPSs are to be used for better forecasts. Cases of good/bad skill scores can be isolated and clustered into weather systems to identify the atmospheric structures that cause difficulties to the forecasts. The objective of this work is to study the sensitivity of weather forecast, produced using the PSU-NCAR Mesoscale Model version 5 (MM5) during the launch of an Indian satellite on 5th May, 2005, to the way in which convective processes are parameterized in the model. The real-time MM5 simulations were made for providing the weather conditions near the launch station Sriharikota (SHAR). A total of 10 simulations (each of 48 h) for the period 25th April to 04th May, 2005 over the Indian region and surrounding oceans were made using different CPSs. The 24 h and 48 h model predicted wind, temperature and moisture fields for different CPSs, namely the Kuo, Grell, Kain-Fritsch and Betts-Miller, are statistically evaluated by calculating parameters such as mean bias, root-mean-squares error (RMSE), and correlation coefficients by comparison with radiosonde observation. The performance of the different CPSs, in simulating the area of rainfall is evaluated by calculating bias scores (BSs) and equitable threat scores (ETSs). In order to compute BSs and ETSs the model predicted rainfall is compared with Tropical Rainfall Measuring Mission (TRMM) observed rainfall. It was observed that model simulated wind and temperature fields by all the CPSs are in reasonable agreement with that of radiosonde observation. The RMSE of wind speed, temperature and relative humidity do not show significant differences among the four CPSs. Temperature and relative humidity were overestimated by all the CPSs, while wind speed is underestimated, except in the upper levels. The model predicted moisture fields by all CPSs show substantial disagreement when compared with observation. Grell scheme outperforms the other CPSs in simulating wind speed, temperature and relative humidity, particularly in the upper levels, which implies that representing entrainment/detrainment in the cloud column may not necessarily be a beneficial assumption in tropical atmospheres. It is observed that MM5 overestimates the area of light precipitation, while the area of heavy precipitation is underestimated. The least predictive skill shown by Kuo for light and moderate precipitation asserts that this scheme is more suitable for larger grid scale (>30 km). In the predictive skill for the area of light precipitation the Betts-Miller scheme has a clear edge over the other CPSs. The evaluation of the MM5 model for different CPSs conducted during this study is only for a particular synoptic situation. More detailed studies however, are required to assess the forecast skill of the CPSs for different synoptic situations.  相似文献   

13.
The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, М = 8.3; January 13, 2007, М = 8.1; January 30, 2016, М = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six–seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of “winter thunderstorm” conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.  相似文献   

14.
Using the total ozone mapping spectrometer (TOMS) aerosol optical depth (AOD)data and the sunshine duration, fog days, Iow cloud cover (LCC), etc. meteorological data in 1979-2000 in North China, as well as empirical orthogonal function (EOF) mode statistical analyses method, the winter aerosol distributive character of Beijing and peripheral city agglomeration and its influence effect on regional climate are investigated in this paper, especially the relation between aerosol influence effect and distinct change regions of eigenvectors of EOF mode. It is found from analyzing the regional distribution of the long-term averaged winter TOMS AOD that there is a large-scale relatively stable high value zone of aerosol concentration in the valley of the Beijing and peripheral U-shape megarelief. A high correlation area of AOD between Beijing and its southern peripheral exists in winter, and in this significant region of aerosol interaction, there is "in-phase" character of the interannual variations of winter AOD, fog days, and LCCs. It indicates that the variations of aerosol in Beijing and its peripheral areas have impacts on interannual changes of fog days and LCCs in this area. The EOF analyses of the meteorological data further reveal the climate change regions and long-term trends of winter sunshine duration-reducing, and LCC- and fog days-increasing in North China. The areas of significant changes of the first EOF eigenvectors (FEE) of sunshine duration, fog days, LCCs almost superpose on corresponding marked regions of interdecadal differences between the 1990s and 1980s, and all accord with the S-N zonal high value pattern and high correlation region of winter AOD in Beijing and its peripheral areas. Interannual variations of their associated time coefficients (ATC) are in phase with that of regional mean AOD, and both of them have a secular rising trend. Results by EOF mode analyses depict the regional climatic change principal character of winter sunshine duration-reducing, and LCC- and fog days-increasing in peripheral areas to the south of Beijing, and reveal the regional influence effect of aerosol, i.e. the high value zone of long-term averaged winter AOD, significant change regions of FEE of sunshine duration, fog days, and LCC all lie in peripheral city agglomeration to the south of Beijing. These distributive features above suggest that there exists a regional strengthening trend of aerosol climatic effect within influence domain in peripheral city agglomeration to the south of Beijing.  相似文献   

15.
利用2002年4月24日至6月20日在西沙海区进行的第三次南海海-气通量观测试验资料,采用涡相关法和TOGA COARE25b版本通量计算方案,计算了西南季风爆发前后海洋-大气间的通量交换,讨论了辐射、动量、感热通量、潜热通量、海洋热量净收支的时间变化特征及其与气象要素变化的关系.结果表明:西南季风爆发前后,太阳短波辐射、海面净辐射、潜热通量和海洋热量净收支变化特别强烈;通量变化受不同环境要素的影响:感热通量与海-气温差呈正相关关系,与气温呈明显的负相关关系.潜热通量与风速、海-气温差及海面水温均有正相关关系,其中与风速的关系最密切.动量通量(τ)主要随风速变化,它与风速(V)的关系可以表示为τ=000185V2-000559V+001248.  相似文献   

16.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

17.
Precipitation is the most fundamental input of water for terrestrial ecosystems. Most precipitation inputs are vertical, via rain, but can be horizontal, via wind‐driven rain and snow, or, in some ecosystems such as tropical montane cloud forests (TMCFs), via fog interception. Fog interception can be particularly important in ecosystems where fog is frequently present and there are seasonal periods of lower rainfall. Epiphytes in trees are a major ecological component of TMCFs and are particularly dependent on fog interception during periods of lower rainfall because they lack access to soil water. But assessing fog interception by epiphytes remains problematic because: (i) a variety of field or laboratory methods have been used, yet comparisons of interception by epiphytes versus interception by various types of fog gauge are lacking; (ii) previous studies have not accounted for potential interactions between meteorological factors. We compared fog interception by epiphytes with two kinds of commonly used fog gauges and developed relations between fog interception and meteorological variables by conducting laboratory experiments that manipulated key fog characteristics and from field measurements of fog interception by epiphytes. Fog interception measured on epiphytes was correlated with that measured from fog gauges but was more than an order of magnitude smaller than the actual measurements from fog gauges, highlighting a key measurement issue. Our laboratory measurements spanned a broad range of liquid water content (LWC) values for fog and indicate how fog interception is sensitive to an interaction between wind speed and LWC. Based on our results, considered in concert with those from other studies, we hypothesize that fog interception is constrained when LWC is low or high, and that fog interception increases with wind speed for intermediate values of LWC—a net result of deposition, impaction, and evaporation processes—until interception begins to decrease with further increases in wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
华南前汛期降水异常与太平洋海表温度异常的关系   总被引:9,自引:0,他引:9       下载免费PDF全文
利用近50年华南地区站点逐日降水观测资料和全球大气、海洋分析资料,分析了华南前汛期降水异常的变化特征及其与太平洋海温异常的联系.结果表明,近50年来华南前汛期降水总体呈现减少趋势.影响华南前汛期降水异常的太平洋海温异常型是一个类似于ENSO的西太平洋暖池模态,即显著海温异常区域位于西太平洋暖池.西太平洋暖池区域(120°E-180°E,20°S-20°N)前期冬季海温异常同华南前汛期降水存在显著的负相关关系,是具有预报意义的海温关键区.该关键区海温异常影响华南前汛期降水的可能物理过程是:当前期冬季暖池异常偏暖时,菲律宾周围地区对流活动加强,导致Walker环流及东亚太平洋中低纬局地Hadley环流增强;该异常通过影响东亚-太平洋遥相关波列,使前汛期期间西太平洋副高加强西伸,脊线位置偏北,同时副热带西风急流减弱北退.随着Hadley环流上升支的增强,东亚副热带地区下沉运动也增强了,华南地区对流活动受到抑制.而且由于副高的增强,经过其北侧向华南地区的西南水汽输送辐合也减弱了,因此前汛期降水偏少.冷海温年的情形则相反,华南前汛期降水偏多.近50年来华南前汛期降水总体呈现趋势性减少正是由于前冬西太平洋暖池趋势性增暖所致.  相似文献   

19.
三峡库区人居环境气候适宜性   总被引:3,自引:0,他引:3  
运用GIS技术,在充分考虑气温、湿度、风速以及日照等条件下,计算了1995年1月至2010年12月三峡库区22个气象站点的温湿指数和风效指数及其时空分布,对三峡库区人居环境气候适宜性的总体分布趋势进行分析.并以2003年6月三峡工程一期蓄水作为时间中点,分析了三峡工程蓄水前后库区人居环境气候适宜性变化,同时对库区水位与气象要素的相关性进行定量分析.结果表明:从11月到翌年3月,库区气候偏冷,属于较不舒适人居环境;夏季的6-9月,整个库区气候偏热,属于较不舒适的人居环境;库区年均温湿指数和风效指数均呈现明显的地区差异,整体表现为由库区中部向东西递减的趋势;库区气候适宜性指数在三峡工程前后变化明显,库区水位与气候适宜性因子在2003年6月以前没有显著的相关性,在2003年6月以后,与温湿指数呈显著正相关,而与风效指数呈显著负相关.  相似文献   

20.
The adsorption of water vapor by soil is one of the crucial contributors to non-rainfall water on land surface, particularly over semi-arid regions where its contribution can be equivalent to precipitation and can have a major impact on dry agriculture and the ecological environment in these regions. However, due to difficulties in the observation of the adsorption of water vapor,research in this area is limited. This study focused on establishing a method for estimating the quantitative observation of soil water vapor adsorption(WVA), and exploring the effects of meteorological elements(e.g., wind, temperature, and humidity) and soil environmental elements(e.g., soil temperature, soil moisture, and the available energy of soil) on WVA by soil over the semi-arid region, Dingxi, by combining use of the L-G large-scale weighing lysimeter and meteorological observation. In addition, this study also analyzed the diurnal and annual variations of WVA amount, frequency, and intensity by soil, how they changed with weather conditions, and the contribution of WVA by soil to the land surface water budget. Results showed that WVA by soil was co-affected by various meteorological and soil environmental elements, which were more likely to occur under conditions of relative humidity of 6.50% and the diurnal variation of relative humidity was large, inversion humidity, wind velocity of 3.4 m/s,lower soil water content, low surface temperature and slightly unstable atmospheric conditions. There was a negative feedback loop between soil moisture and the adsorption of water vapor, and, moreover, the diurnal and annual variations of WVA amount and frequency were evident—WVA by soil mainly occurred in the afternoon, and the annual peak appeared in December and the valley in June, with obvious regional characteristics. Furthermore, the contribution of WVA by soil to the land surface water budget obviously exceeded that of precipitation in the dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号