首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2004,23(20-22):2089-2099
IMAGES core MD01-2416 (51°N, 168°E) provides the first centennial-scale multiproxy record of Holocene variation in North Pacific sea-surface temperature (SST), salinity, and biogenic productivity. Our results reveal a gradual decrease in subarctic SST by 3–5 °C from 11.1 to 4.2 ka and a stepwise long-term decrease in sea surface salinity (SSS) by 2–3 p.s.u. Early Holocene SSS were as high as in the modern subtropical Pacific. The steep halocline and stratification that is characteristic of the present-day subarctic North Pacific surface ocean is a fairly recent feature, developed as a product of mid-Holocene environmental change. High SSS matched a salient productivity maximum of biogenic opal during Bølling-to-Early Holocene times, reaching levels similar to those observed during preglacial times in the warm mid-Pliocene prior to 2.73 Ma. Similar productivity spikes marked every preceding glacial termination of the last 800 ka, indicating recurrent short-term events of mid-Pliocene-style intense upwelling of nutrient-rich Pacific Deepwater in the Pleistocene. Such events led to a repeated exposure of CO2-rich deepwater at the ocean surface facilitating a transient CO2 release to the atmosphere, but the timing and duration of these events repudiate a long-term influence of the subarctic North Pacific on global atmospheric CO2 concentration.  相似文献   

2.
Many sediment records from the margins of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland ice (Dansgaard–Oeschger, D–O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60–24 cal ka), the Bölling/Alleröd warm interval (B/A; 15–13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental margins. The main conclusion from these proxies is that during the last glacial interval (LGI; 24–15 cal ka) and the Younger Dryas cold interval (YD; 13–11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all margins of the Californias. The Corg and trace-element profiles in the LGI–B/A–Holocene transition in the Cariaco Basin on the margin of northern Venezuela are remarkably similar to those in the transition on the northern California margin. Correlation between D–O cycles in Greenland ice with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the margins of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland ice core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the margins of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of atmospheric circulation produced rapid changes in circulation in the eastern North Pacific Ocean. It is likely that the Pacific and Atlantic Oceans were linked through the atmosphere. Warmer air temperatures during interstadials would have strengthened Hadley and Walker circulations, which, in turn, would have strengthened the subtropical high pressure systems in both the North Pacific and the North Atlantic, producing increased rainfall over the Cariaco Basin and increased upwelling along the margins of the Californias.  相似文献   

3.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

4.
《Quaternary Science Reviews》2007,26(1-2):155-169
Diatom abundance and assemblage composition determined for 47 surface sediment samples from the Southeast Pacific (50°S–15°N), combined with existing data for the Peru and Chile margins, demonstrate responses to regional temperature, upwelling, and productivity. High diatom abundances (# valves/g) mark the eastern equatorial Pacific upwelling and the coastal upwelling areas, in particular the upwelling centers off Peru. Freshwater diatoms reflect the low-salinity tongue off the Chilean fjords. Diatom species composition distinguishes between coastal and eastern equatorial Pacific upwelling conditions, and records sea-surface temperatures. Q-mode factor analysis defines five floral assemblages. Factors 1 and 4 determined by the genus Chaetoceros (F1) and Thalassionema (F4) reflect coastal and equatorial upwelling conditions, respectively. Factors 2 and 3 characterized by the genus Thalassiosira and Azpetia nodulifera can be associated with El Niño conditions. A 5th factor, described by Paralia sulcata, records a near-shore upwelling center off Point Concepción, central Chile. Statistical transfer functions relate diatom species percentages to sea-surface temperature and productivity with error estimates of ±0.9 °C and ±23 gC/m2 yr, respectively, and provide new tools for estimating past temperature and productivity along the west coast of South America.  相似文献   

5.
A high-resolution record of paleostorm events along the French Mediterranean coast over the past 7000 years was established from a lagoonal sediment core in the Gulf of Lions. Integrating grain size, faunal analysis, clay mineralogy and geochemistry data with a chronology derived from radiocarbon dating, we recorded seven periods of increased storm activity at 6300–6100, 5650–5400, 4400–4050, 3650–3200, 2800–2600, 1950–1400 and 400–50 cal yr BP (in the Little Ice Age). In contrast, our results show that the Medieval Climate Anomaly (1150–650 cal yr BP) was characterised by low storm activity.The evidence for high storm activity in the NW Mediterranean Sea is in agreement with the changes in coastal hydrodynamics observed over the Eastern North Atlantic and seems to correspond to Holocene cooling in the North Atlantic. Periods of low SSTs there may have led to a stronger meridional temperature gradient and a southward migration of the westerlies. We hypothesise that the increase in storm activity during Holocene cold events over the North Atlantic and Mediterranean regions was probably due to an increase in the thermal gradient that led to an enhanced lower tropospheric baroclinicity over a large Central Atlantic–European domain.  相似文献   

6.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

7.
《Quaternary Science Reviews》1999,18(4-5):573-591
In the endoreic, semi-arid Konya basin on the central Anatolian plateaux, long-term hydrological evolution has left various landforms and lacustrine deposits reflecting the regional climatic evolution, as well as human influence on the local environments. This paper presents results from a cooperative programme grouping several institutes from Turkey and France, on lacustrine, marshy and aeolian sediment sequences of Upper Pleistocene and Holocene age. The detailed study of environmental evolution is based on the reconstruction as well as on the characterization of the extension and contraction phases of wetlands occupying the lowest parts of the Konya plain. A soil and a marsh layer are 14C dated ca. 28,000–25,000 yr bp. Three phases of Pleniglacial (from ca. 22,000 to 17,000 yr bp) high lake levels are distinguished. Complementary OSL dates on aeolian dunes confirm the occurrence of two drought periods: the first occurs around the start of the Late Glacial, the second after the Mid-Holocene climatic optimum, the latter being ‘in phase’ with a similar drought in other Eastern Mediterranean regions. After 17,000 yr bp, no lacustrine phase reached as high a level as the Pleniglacial lake. During the Late Glacial, a shallow freshwater lacustrine phase is identified from >12,500 to 11,000 yr bp. The Late Glacial to Holocene transition corresponds to a general absence of deposits and dateable material, thus suggesting a period of drought, to which no aeolian features have so far been related. The Holocene environmental evolution shows a period of marsh and shallow lake extansion from 6000 to 5500 yr bp; this wetter period is interrupted by the second drought (ca. 5500 yrs bp) as indicated by aeolian dune activity. During the Late Holocene, a renewal of marshes, as well as soil development on slopes, can be interpreted either as climatic changes or as impacts of human use of water and soil resources during prehistoric and historic times.  相似文献   

8.
Palaeosalinity records for groundwater-influenced lakes in the southwest Murray Basin were constructed from an ostracod-based, weighted-averaging transfer function, supplemented with evidence from Campylodiscus clypeus (diatom), charophyte oogonia, Coxiella striata (gastropod), Elphidium sp. (foraminifera), Daphniopsis sp. ephippia (Cladocera), and brine shrimp (Parartemia zietziana) faecal pellets, the δ18O of ostracods, and > 130 μm quartz sand counts. The chronology is based on optically stimulated luminescence and calibrated radiocarbon ages. Relatively wet conditions are marked by lower salinities between 9600 yr and 5700 yr ago, but mutually exclusive high- and low-salinity ostracod communities suggest substantial variability in effective precipitation in the early Holocene. A drier climate was firmly in place by 4500 yr and is marked at the groundwater-dominated NW Jacka Lake by an increase in aeolian quartz and, at Jacka Lake, by a switch from surface-water to groundwater dominance. Short-lived, low-salinity events at 8800, 7200, 5900, 4800, 2400, 1300 and 400 yr are similar in timing and number to those recorded on Australia's southern continental shelf, and globally, and provide evidence for the existence of the ~ 1500-yr cycle in mainland southern Australia. We surmise that these are cool events associated with periodic equatorward shifts in the westerly wind circulation.  相似文献   

9.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   

10.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

11.
The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (∼3300–3000 cal yr BP, ∼2600–1600 cal yr BP, and ∼900–600 cal yr BP), and three weakened ASM intervals (∼4000–3300 cal yr BP, ∼3000–2600 cal yr BP, and ∼1600–900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ∼1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic–atmospheric circulation probably have influenced the late Holocene climate variability in the study region.  相似文献   

12.
《Quaternary Science Reviews》2003,22(5-7):703-723
The Western Siberian lowlands (WSL) are the world's largest high-latitude wetland, and possess over 900,000 km2 of peatlands. The peatlands of the WSL are of major importance to high-latitude hydrology, carbon storage and environmental history. Analysis of the existing Russian data suggests that the mean depth of peat accumulation in the WSL is 256 cm and the total amount of carbon stored there may exceed 53,836 million metric tons. A synthesis of published and unpublished radiocarbon dates indicates that the peatlands first developed at the end of the Last Glacial, with a rapid phase of initiation between 11,000 and 10,000 cal yr BP. Initiation slowed after 8000 cal yr BP and reached a nadir at 4000 cal yr BP. There has been renewed initiation, particularly south of 62°N, following 4000 cal yr BP. The initial development of peatlands in the WSL corresponds with the warming at the close of the Pleistocene. Cooling after 4000 Cal yr BP has likely led to increased permafrost and increased peatland development particularly in central and southern regions. Cold and dry conditions in the far north may have inhibited peatland formation in the late Holocene.  相似文献   

13.
Located on a mountain pass in the west-central Pyrenees, the Col d'Ech peat bog provides a Holocene fire and vegetation record based upon nine 14C (AMS) dates. We aim to compare climate-driven versus human-driven fire regimes in terms of frequency, fire episodes distribution, and impact on vegetation. Our results show the mid-Holocene (8500–5500 cal yr BP) to be characterized by high fire frequency linked with drier and warmer conditions. However, fire occurrences appear to have been rather stochastic as underlined by a scattered chronological distribution. Wetter and colder conditions at the mid-to-late Holocene transition (4000–3000 cal yr BP) led to a decrease in fire frequency, probably driven by both climate and a subsequent reduction in human land use. On the contrary, from 3000 cal yr BP, fire frequency seems to be driven by agro-pastoral activities with a very regular distribution of events. During this period fire was used as a prominent agent of landscape management.  相似文献   

14.
《Quaternary Science Reviews》2005,24(12-13):1463-1478
The aragonite mineralogy and geochemistry of the mollusc faunas preserved at Navan and Bearbrook, Ontario, serve as proxies of original seawater chemistry. The composite section spanning 12,980–10,980 cal yr BP includes the Younger Dryas (YD) paleoclimatic oscillation. Oxygen isotopes demonstrate the onset of cooling with the YD event, in addition to the lowering of marine values by the influx of isotopically light glacial meltwater from Lake Agassiz. Impact of cooling and dilution is reduced or eliminated with the start of the Holocene, when water temperatures and salinities for Champlain Sea (CS) seawater were 8–16 °C and 27–34 ppt, respectively. Overall, oxygen isotope values deceased to −3.5% during the YD mainly due to freshening by glacial meltwater. Carbon isotopes confirm the rise in atmospheric CO2 concentration at the YD–Holocene transition. Marine strontium isotope values for the Allerød–YD–earliest Holocene range from 0.709151 (16,210 cal yr BP) to 0.709145 (12,980 cal yr BP) and 0.709142 (10,950 cal yr BP). The oceanographic changes recorded for the CS are in agreement with the evolutionary phases of Lake Agassiz and deglaciation dynamics of the Laurentide Ice Sheet. The volume and direction of meltwater discharge from Lake Agassiz alternated between the Gulf of Mexico during the Allerød, via the Great Lakes through the CS to the North Atlantic during the YD, and back to the Gulf of Mexico during the early Holocene, but with diminished impact.  相似文献   

15.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

16.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

17.
A lake-level record of Lake Ledro (northern Italy) spans the entire Holocene with a chronology derived from 51 radiocarbon dates. It is based on a specific sedimentological approach that combines data from five sediment profiles sampled in distinct locations in the littoral zone. On a millennial scale, the lake-level record shows two successive periods from 11,700 to 4500 cal yr BP and from 4500 cal yr BP to the present, characterized by lower and higher average lake levels, respectively. In addition to key seasonal and inter-hemispherical changes in insolation, the major hydrological change around 4500 cal yr BP may be related to a non-linear response of the climate system to orbitally-driven gradual decrease in insolation. The Ledro record questions the notion of an accentuated summer rain regime in the northern Mediterranean borderlands during the boreal insolation maximum. Moreover, the Ledro record highlights that the Holocene was punctuated by successive centennial-scale highstands. Correlations with the Preboreal oscillation and the 8.2 ka event, and comparison with the atmospheric 14C residual record, suggest that short-lived lake-level fluctuations developed at Ledro in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity.  相似文献   

18.
This study presents the results of the palynological and diatom analyses of the sediment core recovered in Hoton-Nur Lake (48°37′18″N, 88°20′45″E, 2083 m) in 2004. Quantitative reconstruction of the Holocene vegetation and climate dynamics in the semiarid Mongolian Altai suggests that boreal woodland replaced the primarily open landscape of northwestern Mongolia at about 10 kyr BP (1 kyr = 1000 cal yr) in response to a noticeable increase in precipitation from 200–250 mm/yr to 450–550 mm/yr. A decline of the forest vegetation and a return to a predominance of open vegetation types occurred after 5 kyr BP when precipitation sums decreased to 250–300 mm/yr. Prior to 11.5 kyr BP diatom concentrations are relatively low and the lake is dominated by planktonic Cyclotella and small Fragilariaceae, suggesting the existence of a relatively deep and oligotrophic/mesotrophic lake. The great abundance of Staurosirella pinnata from the beginning of the record until 10.7 kyr BP might imply intensified erosion processes in the catchment and this is fully consistent with the presence of scarce and dry vegetation and the generally arid climate during this period. From about 10.7 kyr BP, more planktonic diatom taxa appeared and increased in abundance, indicating that the lake became more productive as diatom concentration increased. This change correlates well with the development of boreal woodland in the catchment. Decrease in precipitation and changes in the vegetation towards steppe are reflected by the rapid increase in Aulacoseira distans from about 5 kyr BP. The Holocene pollen and diatom records do not indicate soil and vegetation cover disturbances by the anthropogenic activities, implying that the main transformations of the regional vegetation occurred as a result of the natural climate change. Our reconstruction is in agreement with the paleomonsoon records from China, demonstrating an abrupt strengthening of the summer monsoon at 12 kyr BP and an associated increase in precipitation and in lake levels between 11 and 8 kyr BP, followed by the stepwise attenuation of the monsoon circulation and climate aridization towards the modern level. The records from the neighboring areas of Kazakhstan and Russia, situated west and north of Hoton-Nur, demonstrate spatially and temporally different Holocene vegetation and climate histories, indicating that the Altai Mountains as a climate boundary are of pivotal importance for the Holocene environmental and, possibly, habitation history of Central Asia.  相似文献   

19.
The sensitivity of ice sheets to climate change influences the return of meltwater to the oceans. Here we track the Laurentide Ice Sheet along a ~400 km long transect spanning about 6000 yr of retreat during the major climate oscillations of the lateglacial. Thunder Bay, Ontario is near a major topographic drainage divide, thus terrestrial ablation processes are the primary forcers of ice margin recession in the study area. During deglaciation three major moraine sets were produced, and have been assigned minimum ages of 13.9 ± 0.2, 12.3 ± 0.2–12.1 ± 0.1, and 11.2 ± 0.2 cal ka BP from south to north. These define a slow retreat (~10–50 m/a) prior to major climate oscillations which was then followed by a factor of ~2 increase during the Bölling–Alleröd, and an additional increase during the early Holocene. When compared to retreat rates in other terrestrial settings of the ice sheet, nearly identical patterns emerge. However this becomes problematic because a key control on retreat rates is the surface slope of the ice sheet and this should vary considerably over areas of so-called hard and soft beds. Further these ice margin reconstructions would not allow meltwater sourced in the Hudson Basin to drain into the Atlantic basin until after Younger Dryas time.  相似文献   

20.
A ~6.35 m core (06SD) was retrieved from Lake Shudu, Yunnan Province, China. The sediments spanning the period ~22.6–10.5 kcal. yr BP (6.35–1.44 m) were analysed using a combination of variables including pollen, charcoal, particle size, magnetic susceptibility and loss-on-ignition. The resulting palaeorecord provides a high-resolution reconstruction of Late Pleistocene to Early Holocene climatic and environmental changes in southwestern China. Our findings indicate that from c. 22.6 to 17.7 kcal. yr BP, vegetation assemblages were primarily aligned to sparse xerophytic grassland/tundra or cold-tolerant boreal Pinus forest, indicating that climatic conditions in southwestern China were cold and dry. However, from c. 17.7 to 17.4 kcal. yr BP, the Lake Shudu record is punctuated by marked environmental changes. These include the establishment of denser vegetation cover, a marked expansion of boreal Pinus forest and enhanced hydrological activity in the catchment over centennial timescales, perhaps suggesting that stepwise variations in the Asian Monsoon were triggering fundamental environmental changes over sub-millennial timescales. Thereafter, the pollen record captures a period of environmental instability reflected in fluctuations across all of the variables, which persists until c. 17.1 kcal. yr BP. After c. 17.1 kcal. yr BP, the expansion of steppe vegetation cover and cold–cool mixed forest consisting of mesophilous vegetation such as Tsuga and Picea, thermophilous trees including Ulmus and deciduous Quercus inferred from the Lake Shudu pollen record point to the establishment of warmer, wetter and perhaps more seasonal conditions associated with a strengthening Asian Summer Monsoon during the shift from Pleistocene to Holocene climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号