首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal variations of phytoplankton/chlorophyll-a (Chl-a) distribution, sea surface wind, sea height anomaly, sea surface temperature and other oceanic environments for long periods are analyzed in the South China Sea (SCS), especially in the two typical regions off the east coast of Vietnam and off the northwest coast of Luzon, using remote sensing data and other oceanographic data. The results show that seasonal and spatial distributions of phytoplankton biomass in the SCS are primarily influenced by the monsoon winds and oceanic environments. Off the east coast of Vietnam, Chl-a concentration is a peak in August, a jet shape extending into the interior SCS, which is associated with strong southwesterly monsoon winds, the coastal upwetling induced by offshore Ekman transport and the strong offshore current in the western SCS. In December, high Chl-a concentration appears in the upwelling region off the northwest coast of Luzon and spreads southwestward. Strong mixing by the strong northeasterly monsoon winds, the cyclonic circulation, southwestward coastal currents and river discharge have impacts on distribution of phytoplankton, so that the high phytoplankton biomass extends from the coastal areas over the northern SCS to the entire SCS in winter. These research activities could be important for revealing spatial and temporal patterns of phytoplankton and their interactions with physical environments in the SCS.  相似文献   

2.
2013年4月,2014年5月,2012年6月和2015年10月在印度尼西亚北部苏拉维斯蓝碧海峡(Lembeh Strait)进行了4个航次的海洋生态调查,研究了蓝碧海峡的浮游植物种类组成,以及浮游植物群落结构的季节变化及其驱动因子。四个航次的调查中记录了5类浮游植物和416个种(类)。调查区浮游植物密度平均为2348cells/L,硅藻和甲藻种类最多。蓝藻种类最少,但丰度很高。季风转换期的4月份和10月份浮游植物丰度总量较低,东南季风期间5月份和6月份的浮游植物丰度较高。除了束毛藻(Trichodesmium)之外,常见种是浮游硅藻。浮游植物的丰度和多样性的季节性变化明显。海链藻(Thalassionema)、拟菱形藻(Pseudo-nitzschia)和蓝藻类的束毛藻对群落的不相似性贡献最大。由于蓝碧海峡南部营养盐浓度较高,南部水域的硅藻和甲藻密度稍高于海峡北部。虽然,南北两个水体中蓝藻的分布趋于均匀,但蓝碧海峡南部也有较高密度。与雅加达湾以及中国的一些海湾相比,蓝碧海峡的浮游植物丰度相当低。分析表明,SE季风期间上升流营养盐是左右浮游植物丰度月变化的重要因素。蓝碧海峡浮游生态系原始,且接近天然本底,人类活动背景噪声低,能够清晰地响应大环境的变化,是研究浮游生态系统的理想区域。  相似文献   

3.
冬季婆罗洲岛西北沿岸上升流的时空特征及机理研究   总被引:1,自引:0,他引:1  
Winter coastal upwelling off northwest Borneo in the South China Sea(SCS) is investigated by using satellite data, climatological temperature and salinity fields and reanalysis data. The upwelling forms in December, matures in January, starts to decay in February and almost disappears in March. Both Ekman transport induced by the alongshore winter monsoon and Ekman pumping due to orographic wind stress curl are favorable for the upwelling. Transport estimates demonstrate that the month-to-month variability of Ekman transport and Ekman pumping are both consistent with that of winter coastal upwelling, but Ekman transport is two times larger than Ekman pumping in January and February. Under the influence of El Ni?o-Southern Oscillation(ENSO), the upwelling shows remarkable interannual variability: during winter of El Ni?o(La Ni?a) years, an anticyclonic(a cyclonic) wind anomaly is established in the SCS, which behaves a northeasterly(southwesterly) anomaly and a positive(negative) wind stress curl anomaly off the northwest Borneo coast, enhancing(reducing) the upwelling and causing anomalous surface cooling(warming) and higher(lower) chlorophyll concentration. The sea surface temperature anomaly(SSTA) associated with ENSO off the northwest Borneo coast has an opposite phase to that off southeast Vietnam, resulting in a SSTA seesaw pattern in the southern SCS in winter.  相似文献   

4.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

5.
Results are presented about the changes in chlorophyll a density, carbon fixation and nutrient levels in the surface waters of three transects of the southern South China Sea (SCS), northern Java Sea (...  相似文献   

6.
In the coastal waters off northern California, seasonal wind-driven upwelling supplies abundant nutrients to be processed by phytoplankton productivity. As part of the Coastal Ocean Processes: Wind Events and Shelf Transport (CoOP WEST) study, nutrients, CO2, size-fractionated chlorophyll, and phytoplankton community structure were measured in the upwelling region off Bodega Bay, CA, during May–June 2000, 2001 and 2002. The ability of this ecosystem to assimilate nitrate (NO3) and silicic acid/silicate (Si(OH)4) and accumulate particulate material (i.e. phytoplankton) was realized in all 3 years, following short events of upwelling-favorable winds, followed by periods of relaxed winds. This was observed as phytoplankton blooms, dominated by chlorophyll in cells greater than 5 μm in diameter, that reduced the ambient nutrients to zero. These communities were located over the near-shore shelf (<100 m depth) and were dominated by diatoms. An optimal window of 3–7 days of relaxed winds, following an upwelling pulse, was required for chlorophyll accumulation. The large-celled phytoplankton that result are likely important players in coastal new production and carbon cycling.  相似文献   

7.
To understand the response of marine ecosystem to environmental factors, the oceanographic (physical and biochemical) data are analyzed to examine the spatio-temporal distributions of chlorophyll a (Chl a) associated with surface temperature, winds and height anomaly for long periods (1997-2008) in the western South China Sea (SCS). The results indicate that seasonal and spatial distributions of Chl a are primarily influenced by monsoon winds and hydrography. A preliminary Empirical Orthogonal Function (EOF) analysis of remotely sensed data is used to assess basic characteristics of the response process of Chl a to physical changes, which reveals interannual variability of anomalous low Chl a values corresponding to strong El Ni o (1997-1998), high values corresponding to strong La Ni a (1999-2000), low Chl a corresponding to moderate El Ni o (2001-2003), upward Chl a after warm event in 2005 off the east coast of Vietnam. The variability of Chl a in nearshore and the Mekong River Estuary (MER) waters also suggests its response to these warm or cold processes. Considering the evidence for covariabilities between Chl a and sea surface temperature, winds, height anomaly (upwelling or downwelling), cold waters input and strong winds mixing may play important roles in the spatial and temporal variability of high Chl a. Such research activities could be very important to gain a mechanistic understanding of ecosystem responses to the climate change in the SCS.  相似文献   

8.
This study describes the main seasonal stages in oceanographic conditions and phytoplankton off La Coruña (Galicia, NW Spain), during 1991 and 1992, based mainly on monthly cruises near the coast. Upwelling conditions were studied using an upwelling index calculated from local winds. The Galician coast is affected by a long upwelling season for most of the year. The upwelling pulses interact with the thermal stratification-mixing cycle of surface waters, primarily affecting the dynamics of phytoplankton. In addition, the presence of water masses of different salinity in the subsurface layers changes the stratification of the water column. The less-saline North Atlantic Central Water (NACW) was normally associated with upwelling events during summer. However, on several occasions during the study, the presence of Eastern North Atlantic Water (ENAW) of subtropical origin was observed with salinities up to 36·22 and temperatures between 13 and 14 °C.Observations were grouped into five main stages related to the degree of surface stratification and characteristics of phytoplankton communities. These stages were recognized in both annual cycles, and were termed: winter mixing, spring and autumn blooms, summer upwelling, thermal stratification and special events (red tides and downwelling). A homogeneous water column was the main characteristic of the winter stage, with high nutrient concentrations and low phytoplankton biomass. Eastern North Atlantic Water appeared at the end of this stage, which lasted from November to February. The spring and autumn blooms occurred along with weak thermohaline gradients at the surface, producing high phytoplankton concentrations. Favourable upwelling conditions and the presence of ENAW in a subsurface layer were the factors that most likely induced earlier blooms, while thermal gradients developed at the surface could have been more important for later blooms. Upwelling events during summer were related to a reduction in the depth of the surface mixed layer as the pycnocline moved upwards, and can produce significant phytoplankton accumulations. These summer blooms interrupted the thermal stratification stage, characterized by low nutrient and phytoplankton concentrations at the surface. The dominant phytoplankton in the study was composed mainly of diatoms, especially during blooms. However, a proliferation of red-tide dinoflagellates was observed along with weak upwelling conditions in late summer. Also in late summer, strong downwelling conditions caused the accumulation of warmer shelf waters inshore, inducing the sinking of particulate matter produced at the surface.  相似文献   

9.
中国近海区域浮游植物生态对气候变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
我国近海区域对气候变化高度敏感,浮游植物生态的变化关系到我国近海生态安全.采用重构的遥感数据等资料,分析并综述我国近海区域浮游植物叶绿素a浓度、初级生产力和浮游植物群落结构对气候变化背景下海水升温、风场等环境因子的响应.结果表明,东(南)中国海叶绿素a浓度略有上升(下降)的趋势,但浮游植物群落结构和生物量有明显的变化;其中,微微型浮游植物和甲藻占比增加,小型浮游植物物种成为海区优势种,暖水性种分布区北扩,而这与气候变化背景下海洋热动力环境的长期变化及其对营养盐供给的影响关系密切.分析还指出了气候变化对我国近海区域海洋生态影响研究迫切需要开展的若干工作.  相似文献   

10.
夏季外海水入侵对大亚湾浮游植物群落结构的影响   总被引:1,自引:0,他引:1  
杨熙  谭烨辉 《海洋科学》2019,43(7):96-105
夏季大亚湾存在由粤东沿岸上升流所引起的外海水入侵现象,且入侵强度存在年际差异,作者利用大亚湾2004~2017年历年夏季航次调查数据,将弱入侵年份与强入侵年份进行对比分析,以探讨外海水入侵对大亚湾浮游植物群落结构的影响。结果显示,当外海水入侵由弱变强时,湾内水体理化特征发现显著变化,水体由高温低盐转变为低温高盐,N、P等营养盐含量出现下降。海水理化性质的改变导致了浮游植物群落结构的变化,硅藻、甲藻种类数以及浮游植物Shannon-wiener指数均出现升高;浮游植物总丰度和硅藻丰度下降,甲藻丰度变化不明显;常见浮游植物种类伪菱形藻属(Pseudo-nitzschiasp.)、角毛藻属(Chaetocerossp.)和叉角藻(Ceratiumfurca)丰度出现下降,而中肋骨条藻(Skeletonemacostatum)和菱形海线藻(Thalassionemanitzschioides)丰度出现升高;优势种由单一硅藻种类向硅藻和甲藻共为优势转变。此外,外海水入侵还会通过改变海水理化因子的空间分布以及湾内上层水体流向来影响浮游植物群落结构的空间分布。  相似文献   

11.
Sea level, salinity, temperature, nitrate, nitrite, phosphate, silicate, chlorophylls a, b and c and their phaeophytins, phytoplankton abundance and phytoplankton productivity time series were generated for the mouth and three interior locations of Bahia San Quintin, Baja California, Mexico, for 10 days during summer of 1979. The samples were taken once every 2 h. This was done to describe space and time variability of these ecological properties and to elucidate the main factors that cause this variability. Upwelling events bring nutrient reach waters near the bay mouth and tidal currents propagate those waters throughout the bay. Nutrient remineralization at the sediments and the effect of turbulence induced by tidal currents and winds increase nutrient concentrations in the interiors of the bay. In comparison with available information on nutrients limited growth of planktonic algae, nutrients seemed not to be limiting to phytoplankton growth during the sampling period. Phytoplankton cell abundances at the extremes of the lagoon are an order of magnitude lower than at the mouth due to greater turbidity. Chlorophyll concentrations at the extremes are about one-third of those of the mouth. Primary productivity decreases from the mouth to the interiors in the same manner as chlorophyll does. There is not a significant difference in cell size between phytoplankton at the bay mouth and those at the extremes of the bay. Primary productivity in the bay is comparable to the productivity maxima of other upwelling areas. There is no clear permanent dominance of diatoms over dinoflagellates, or vice versa, at any location in the bay. The alternation of upwelling and non-upwelling played an important role, together with that of the spring-neap tide cycle, in producing low frequency (< 0.01 cycles h?1) temporal variability of ecological properties throughout the bay.  相似文献   

12.
On the basis of hydrographic data obtained from 28 November to 27 December, 1998, the three-dimensional structure of circulation in the South China Sea (SCS) is computed using a three-dimensional diagnostic model. The combination of sea surface height anomaly from altimeter data and numerical results provides a consistent circulation pattern for the SCS, and main circulation features can be summarized as follows: in the northern SCS there are a cold and cyclonic circulation C1 with two cores C1-1 and C1-2 northwest of Luzon and an anticyclonic eddy (W1) near Dongsha Islands. In the central SCS there is a stronger cyclonic circulation C2 with two cores C2-1 and C2-2 east of Vietnam and a weaker anticyclonic eddy W2 northwest of Palawan Island. A stronger coastal southward jet presents west of the eddy C2 and turns to the southeast in the region southwest of eddy C2-2, and it then turns to flow eastward in the region south of eddy C2-2. In the southern SCS there are a weak cyclonic eddy C3 northwest of Borneo and an anti-cyclonic circulation W3 in the subsurface layer. The net westward volume transport through section CD at 119.125°E from 18.975° to 21.725°N is about 10.3 × 106 m3s−1 in the layer above 400 m level. The most important dynamic mechanism generating the circulation in the SCS is a joint effect of the baroclinicity and relief (JEBAR), and the second dynamical mechanism is an interaction between the wind stress and relief (IBWSR). The strong upwelling occurs off northwest Luzon.  相似文献   

13.
中尺度涡影响下的南海西部活性铝分布   总被引:1,自引:0,他引:1  
To understand the distribution of aluminum(Al) under the influence of mesocale eddies in the western South China Sea(SCS), sea level anomaly, geostrophic current, environmental parameters and reactive Al were investigated in the western SCS in August 2013. The highest reactive Al concentration((180±64) nmol/L) was observed in the surface waters, indicating a substantial atmospheric input. Vertically, the reactive Al decreased from the surface high concentration to the subsurface minima at the depth of chlorophyll a(Chl a) maxima and then increased again with depth at most of the stations. The average concentration of reactive Al in the upper 100 m water column was significantly lower in the cyclonic eddy((137±6) nmol/L) as compared with that in the noneddy waters((180±21) nmol/L). By contrast, the average concentrations of Chl a and silicate in the upper 100 m water column were higher in the cyclonic eddy and lower in the anticyclonic eddy. There was a significant negative correlation between the average concentrations of reactive Al and Chl a in the upper 100 m water column. The vertical distribution of reactive Al and the negative correlation between reactive Al and Chl a both suggest that the reactive Al in the upper water column was significantly influenced by biological removal processes. Our results indicate that mesoscale eddies could regulate the distribution of reactive Al by influencing the primary production and phytoplankton community structure in the western SCS.  相似文献   

14.
Diatoms, dinoflagellates, coccolithophores, nanoflagellates, picophytoplankton and procaryote algae (Synechococcus spp. and prochlorophytes) were quantified by microscopy and flow cytometry, and their biomass determined, at 12 stations along a 1600 km transect across the Arabian Sea at the end of the SW monsoon in September, and during the inter-monsoon period of November/December 1994. The transect spanned contrasting oceanic conditions that varied from seasonally eutrophic, upwelling waters through mesotrophic, downwelling waters to permanently oligotrophic, stratified waters. The overall diversity of diatoms, dinoflagellates and coccolithophores along the transect was not significantly different between the SW monsoon and inter-monsoon. However, diatoms showed greatest diversity during the SW monsoon and coccolithophores were most diverse during the inter-monsoon. Integrated phytoplankton standing stocks during the SW monsoon ranged from 3 to 9 g C m-2 in the upwelling eutrophic waters, from 3 to 5 g C m-2 in downwelling waters, and from 1 to 2 g C m-2 in oligotrophic waters. Similar phytoplankton standing stocks were found in oligotrophic waters during the inter-monsoon, but were ca. 40% lower compared to the SW monsoon in the more physically dynamic waters. Phytoplankton abundance and biomass was dominated by procaryote taxa. Synechococcus spp. were abundant (often >108 cells l-1) during both the SW monsoon and inter-monsoon, where the nitrate concentration was ⩾0.1 μ mol l-1, and often dominated the phytoplankton standing stocks. Prochlorophytes were restricted to oligotrophic stratified waters during the SW monsoon period but were found at all stations along the transect during the inter-monsoon, dominating the phytoplankton standing stocks (>40%) in the oligotrophic region during this period. Of the nano- and micro-phytoplankton, only diatoms contributed significantly to phytoplankton standing stocks, and then only in near-shore upwelling waters during the SW monsoon. There were significant changes in the temporal composition of the phytoplankton community. In nearshore waters a mixed community of diatoms and Synechococcus spp. dominated during the SW monsoon. This gave way to a community dominated by Synechococcus spp. in the intermonsoon. In the downwelling zone, a Synechococcus spp. dominated community was replaced by a mixed procaryote community of Synechococcus spp. and prochlorophytes. In the oligotrophic stratified waters, the mix of procaryote algae was replaced by one dominated by prochlorophytes alone.  相似文献   

15.
The temporal and spatial distributions of zooplankton biomass and larval fish recorded during 27 months (December 1995-December 1998) off the Pacific coast of central México are analyzed. A total of 316 samples were obtained by surface (from 40-68 to 0 m) oblique hauls at 12 sampling sites using a Bongo net. Two well-defined periods were observed: a pre-ENSO period (December 1995-march 1997) and an ENSO event (July 1997-September 1998) characterized by impoverishment of the pelagic habitat. The highest biomass concentrations occurred at coastal stations during the pre-ENSO period. During the El Niño period no spatial patterns were found in coastal waters. The months with highest biomass were those in which the lowest sea surface temperature (SST) occurred (January-May), and this pattern was also observed during the ENSO period. A typical, although attenuated, seasonal environmental pattern with enhanced phytoplankton (diatoms and dinoflagellates) was prevalent during the El Niño event in nearshore waters. During the El Niño period the phytoplankton was mainly small diatoms (microphytoplankton), while dinoflagellates were practically absent. The most parsimonious generalized linear models explaining spatial and temporal distribution of larval fish species included the ENSO index (MEI), upwelling index (UI) and distance to the coast. The environmental variability defined on an interannual time-scale by the ENSO event and the seasonal hydroclimatic pattern defined by the UI (intra-annual-scale) controlled the ecosystem productivity patterns. The small-scale distribution patterns (defined by a cross-shore gradient) of plankton were related to the hydroclimatic seasonality and modulated by interannual anomalies.  相似文献   

16.
A simple procedure for fractionation of phosphorus components in natural populations of phytoplankton has been developed. By a combination of a trichloroacetic acid (TCA) extraction, a hot dilute acid treatment, a charcoal treatment and an organic solvent extraction, cellular phosphorus was divided into orthophosphate, nucleotide phosphorus, sugar phosphates, acid-soluble polyphosphates, lipid phosphorus, nucleic acid phosphorus, acid-insoluble polyphosphates, and residual phosphorus. The recovery of phosphorus was 94±5%. This technique was applied to natural populations of phytoplankton in summer surface waters of Tokyo Bay. Nucleic acid phosphorus and orthophosphate were most abundant, and accounted for 30 to 50% of total phytoplankton phosphorus. The nucleic acid phosphorus was proportional to the biomass of phytoplankton, irrespective of ambient nutrient concentrations. The orthophosphate showed the largest change in association with the change in cellular phosphorus content as well as in ambient phosphate. The orthophosphate serves as a phosphorus reserve in the natural populations of phytoplankton in summer surface waters of Tokyo Bay whereSkeletonema costatum was dominant. Acid-insoluble polyphosphates tended to increase when ambient concentration of phosphate was high, but their amounts were almost one order of magnitude lower than that of orthophosphate.  相似文献   

17.
《Journal of Sea Research》2010,63(4):238-249
From July 2001 to May 2005, at a fixed station located in Lisbon Bay (Cascais: 38° 41′ N, 09° 24′ W), surface seawater samples were collected on a weekly basis. We aimed to describe at different temporal scales, short-term to interannual, the phytoplankton community in relation to hydrographic conditions.Maxima of the main phytoplankton groups varied according to the seasonality of upwelling/downwelling cycles and nutrient availability and were associated with particular hydrological mesoscale structures highlighted by satellite images. Short succession cycles were identified dependent on coastal upwelling events. Intermittent and weak pulses allowed the coexistence of species from different succession stages and groups, although having consecutive maxima. The interannual differences observed in the phytoplankton community, in Lisbon Bay, varied according to both the duration and strength of the upwelling events and to precipitation and Tagus river flow regimes.Diatoms developed and were dominant, during spring–summer under prevailing upwelling conditions and silicon availability. Short upwelling pulses appeared to be unfavourable for diatoms maintenance. When upwelling weakened and SST increased due to onshore advection of warmer waters, coccolithophores dominated. This assemblage was the second most abundant during the study, in particular during the short transition period from upwelling (summer) to downwelling seasons (autumn) distributing in the largest range of hydrographical conditions between diatoms (maximum turbulence) during early spring and dinoflagellates (maximum stratification) during summer to further dominate during autumn and winter. Nitrites and nitrates seemed to favour greater developments of this group. Dinoflagellates peaked mainly during summer and were the less abundant through the four years due to the decrease of lasting convergence periods. Like coccolithophores, a preference for warmer waters emerged but this group seemed to have a narrow tolerance to turbulence and temperature changes.  相似文献   

18.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

19.
The “Wind Events and Shelf Transport” (WEST) program was an interdisciplinary study of coastal upwelling off northern California in 2000–03. WEST was comprised of modeling and field observations. The primary goal of WEST was to better describe and understand the competing influences of wind forcing on planktonic productivity in coastal waters. While increased upwelling-favorable winds lead to increased nutrient supply, they also result in reduced light exposure due to deeper surface mixed layers and increased advective loss of plankton from coastal waters. The key to understanding high levels of productivity, amidst these competing responses to wind forcing, is the temporal and spatial structure of upwelling. Temporal fluctuations and spatial patterns allow strong upwelling that favors nutrient delivery to be juxtaposed with less energetic conditions that favor stratification and plankton blooms. Observations of winds, ocean circulation, nutrients, phytoplankton and zooplankton off Bodega Bay and Point Reyes (38°N) were combined with model studies of winds, circulation and productivity. This overview of the WEST program provides an introduction to the WEST special issue of Deep-Sea Research, including the motivation for WEST, a summary of study components, an integrative synthesis of major research results to-date, and background on conditions during field studies in May–June 2001 (the upwelling period on which this special issue is focused).  相似文献   

20.
It has long been seen from satellite ocean color data that strong zonal gradients of phytoplankton biomass persistently occur in the southern Drake Passage during austral summer and fall, where the low productivity Antarctic Surface Water (ASW) within the Antarctic Circumpolar Current (ACC) region transforms to the high productivity water. An interdisciplinary cruise was conducted in February and March 2004 to investigate potential physical and biogeochemical processes, which are responsible for transporting nutrients and metals and for enhancing primary production. To explore physical processes at both the meso- and large-scales, surface drifters, a shipboard Acoustic Doppler Current Profiler and conductivity–temperature–depth sensors were used. Analyzing meso- and large-scale hydrography, circulation and eddy activities, it is shown that the topographic rise of the Shackleton Transverse Ridge plays the key role in steering an ACC branch southward west of the ridge, forming an eastward ACC jet through the gap between the ridge and Elephant Island and causing the offshelf transport of shelf waters approximately 1.2 Sv from the shelf near Elephant Island. High mesoscale eddy activities associated with this ACC southern branch and shelf waters transported off the shelf were found. The mixing between the iron-poor warmer ASW of the ACC and iron-rich waters on the shelf through horizontal transport and vertical upwelling processes provides a physical process which could be responsible for the enhanced primary productivity in this region and the southern Scotia Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号