首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Coastal Engineering》2005,52(1):43-62
A vertical two-dimensional (2D) numerical model for time dependent local scour below offshore pipelines subject to unidirectional steady flow is developed. The governing equations for the flow and sediment transport are solved by using finite difference method in a general curvilinear coordinate system. The performance of two turbulence models, the standard kɛ model and Smagorinsky subgrid scale (SGS) model, on modeling time dependent scour processes is examined. Both suspended load and bed load are considered in the scour model. The suspended-load model is verified against two channel sediment transport cases. The change of bed level is calculated from the continuity equation of total sediment transport. A new time marching scheme and a sand slide scheme are proposed for the scour calculation. It is found that the proposed time marching scheme and sand slide model work well for both clear-water and live-bed scour situations and the standard kɛ turbulence closure is more preferable than the SGS model in the 2D scour model developed in this study.  相似文献   

3.
4.
《Ocean Modelling》2008,20(2):157-169
The dynamical link between mean state biases and dominant timescales of interannual variability is examined using the output from two state-of-the-art coupled model simulations, results from an ocean-only simulation forced with observed surface fields, and various observational data sets. The focus of this study is the relative role of the mean upper ocean density structure vs. anomalous wind forcing in controlling the spectral characteristics of tropical Pacific interannual variability. It is shown that an extensive South Pacific Convergence Zone (SPCZ) creates a potential vorticity (PV) barrier in the Southern Hemisphere similar to the one associated with the Intertropical Convergence Zone (ITCZ) in the Northern Hemisphere in both climate models. The PV barrier in the Southern Hemisphere strongly constrains the mean equatorward flow in the ocean model pycnocline, creating a “choke point” for the mean flow around 10°S. It is then examined whether the PV barrier can also limit the anomalous flow associated with mass recharge/discharge to/from the equatorial thermocline at interannual timescales. If the anomalous flow were impeded by the mean PV structure the meridional extent of the area involved in the mass recharge/discharge process would be narrower, leading to a shorter adjustment (and ENSO) timescale. Comparison of the two climate models, both of which have similarly erroneous PV structures in the southern tropical Pacific, but different interannual timescales, shows that the meridional extent of the anomalous meridional transport is primarily controlled by the latitudinal location of the wind stress curl anomalies, while the mean state bias in the Southern Hemisphere does not seem to have any significant influence.  相似文献   

5.
6.
Five different coastal area morphodynamic models have been set up to run on the same offshore breakwater layout and an intercomparison carried out on the hydrodynamic and morphodynamic output produced by each scheme. In addition, the predicted morphodynamics was checked against available laboratory and field data.It is concluded that the models are capable of producing realistic estimates for the dominant morphodynamic features associated with offshore breakwaters. Coupling of the wave, current and sediment transport components of each scheme is shown to yield bathymetry which attains a state of equilibrium, unlike models which are based on the initial transport field only.  相似文献   

7.
The typical equation for bed level change in sediment transport in river, estuary and near shore systems is based on conservation of sediment mass. It is generally a nonlinear conservation equation for bed level. The physics here are similar to shallow water wave equations and gas dynamics equation which will develop shock waves in many circumstances. Many state-of-art morphological models use classical lower order Lax–Wendroff or modified Lax–Wendroff schemes for morphology which are not very stable for long time sediment transport processes simulation. Filtering or artificial diffusion are often added to achieve stability. In this paper, several shock capturing schemes are discussed for simulating bed level change with different accuracy and stability behaviors. The conclusion is in favor of a fifth order Euler-WENO scheme which is introduced to sediment transport simulations here over other schemes. The Euler-WENO scheme is shown to have significant advantages over schemes with artificial viscosity and filtering processes, hence is highly recommended especially for phase-resolving sediment transport models.  相似文献   

8.
The newly developed nearshore circulation model, SHORECIRC, using a hybrid finite-difference finite-volume TVD-type scheme, is coupled with the wave model SWAN in the Nearshore Community Model (NearCoM) system. The new modeling system is named NearCoM-TVD and the purpose of this study is to report the capability and limitation of NearCoM-TVD for several coastal applications. For tidal inlet applications, the model is verified with the semi-analytical solution of Keulegan (1967) for an idealized inlet-bay system. To further evaluate the model performance in predicting nearshore circulation under intense wave–current interaction over complex bathymetry, modeled circulation patterns are validated with measured data during RCEX field experiment (MacMahan et al., 2010). For sediment transport applications, two sediment transport models are applied to predict three sandbar migration events at Duck, NC, during August to October 1994 (Gallagher et al., 1998). The model of Kobayashi et al. (2008) incorporates wave-induced onshore sediment transport rate as a function of the standard deviation of wave-induced horizontal velocities. The modeled beach profile evolution for two offshore events and one onshore event agrees well with the measured data. The second model investigated here combines two published sediment transport models, namely, the total load model driven by currents under the effect of wave stirring (Soulsby, 1997) and the wave-driven sediment transport model due to wave asymmetry/skewness (van Rijn et al., 2011). The model study with limited field data suggests that the parameterization of wave stirring is appropriate during energetic wave conditions. However, during low energy wave conditions, the effect of wave stirring needs to be re-calibrated.  相似文献   

9.
《Ocean Modelling》2010,31(4):310-322
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

10.
Diffusion reduction in an arbitrary scale third generation wind wave model   总被引:1,自引:0,他引:1  
The numerical schemes for the geographic propagation of random, short-crested, wind-generated waves in third-generation wave models are either unconditionally stable or only conditionally stable. Having an unconditionally stable scheme gives greater freedom in choosing the time step (for given space steps). The third-generation wave model SWAN (“Simulated WAves Nearshore”, Booij et al., 1999) has been implemented with this type of scheme. This model uses a first order, upwind, implicit numerical scheme for geographic propagation. The scheme can be employed for both stationary (typically small scale) and nonstationary (i.e. time-stepping) computations. Though robust, this first order scheme is very diffusive. This degrades the accuracy of the model in a number of situations, including most model applications at larger scales. The authors reduce the diffusiveness of the model by replacing the existing numerical scheme with two alternative higher order schemes, a scheme that is intended for stationary, small-scale computations, and a scheme that is most appropriate for nonstationary computations. Examples representative of both large-scale and small-scale applications are presented. The alternative schemes are shown to be much less diffusive than the original scheme while retaining the implicit character of the particular SWAN set-up. The additional computational burden of the stationary alternative scheme is negligible, and the expense of the nonstationary alternative scheme is comparable to those used by other third generation wave models. To further accommodate large-scale applications of SWAN, the model is reformulated in terms of spherical coordinates rather than the original Cartesian coordinates. Thus the modified model can calculate wave energy propagation accurately and efficiently at any scale varying from laboratory dimensions (spatial scale O(10 m) with resolution O(0.1 m)), to near-shore coastal dimension (spatial scale O(10 km) with resolution O(100 m)) to oceanic dimensions (spatial scale O(10 000 km) with resolution O(100 km).  相似文献   

11.
This study used the strength reduction method to analyze the seismic stability of a subsea tunnel under the effects of seepage and temperature. Excess pore water pressure within the rock mass was first eliminated by calculating the consolidation; then, an earthquake wave was applied to begin the dynamic and time-history analysis and to obtain the maximum horizontal displacement of the model boundary. Finally, a temperature field model was established for the thermal analysis of the structure. The temperature of each node of the structure was regarded as a form of outside load applied to the reduction model; both sides of the vertical horizontal displacement of the boundary nodes and gravity were used as inputs for the static analysis when the vertex horizontal displacement reached its maximum value. By continuously decreasing the shear strength parameters, the safety factor of the tunnel structure was determined. The results show that the plastic zone first appeared in a smaller range on both sides of the tunnel arch feet near the lining and vault of both sides. The safety factor decreased with increasing water depth and overburden layer thickness.  相似文献   

12.
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

13.
以描述中尺度涡旋对示踪物的输送作用为目的的湍流混合方案GM90经证明对海洋模式的模拟能力较以前的湍流混合方案有较大的提高.该方案涉及到两个主要参数:等密度面扩散系数(AI)和等密度面厚度扩散系数(Aith).该文的目的就是利用中国科学院大气物理研究所(IAP)全球海洋环流模式L30T63研究以上两个系数取值大小对主动示踪物(温盐)以及被动示踪物(CFC-11)海洋分布的影响.实验结果表明这两个系数的取值可明显改变大洋温盐垂直分布以及海洋对CFC-11的吸收,且两个系数在其中起到的作用有很大的差异.从几个剖面的分析结果可知,总的来说,AI的增加使得CFC-11主要储存区的模拟结果更接近观测资料,而Aith的增大使得模拟结果变差.  相似文献   

14.
Owing to lack of observational data and accurate definition,it is difficult to distinguish the Kuroshio intrusion water from the Pacific Ocean into the South China Sea(SCS).By using a passive tracer to identify the Kuroshio water based on an observation-validated three-dimensional numerical model MITgcm,the spatio-temporal variation of the Kuroshio intrusion water into the SCS has been investigated.Our result shows the Kuroshio intrusion is of distinct seasonal variation in both horizontal and vertical directions.In winter,the intruding Kuroshio water reaches the farthest,almost occupying the area from 18°N to 23°N and 114°E to 121°E,with a small branch flowing towards the Taiwan Strait.The intrusion region of the Kuroshio water decreases with depth gradually.However,in summer,the Kuroshio water is confined to the east of 118°E without any branch reaching the Taiwan Strait;meanwhile the intrusion region of the Kuroshio water increases from the surface to the depth about 205 m,then it decreases with depth.The estimated annual mean of Kuroshio Intrusion Transport(KIT) via the Luzon Strait is westward to the SCS in an amount of –3.86×106 m3/s,which is larger than the annual mean of Luzon Strait Transport(LST) of –3.15×106 m3/s.The KIT above 250 m accounts for 60%–80% of the LST throughout the entire water column.By analyzing interannual variation of the Kuroshio intrusion from the year 2003 to 2012,we find that the Kuroshio branch flowing into the Taiwan Strait is the weaker in winter of La Ni?a years than those in El Ni?o and normal years,which may be attributed to the wind stress curl off the southeast China then.Furthermore,the KIT correlates the Ni?o 3.4 index from 2003 to 2012 with a correlation coefficient of 0.41,which is lower than that of the LST with the Ni?o 3.4 index,i.e.,0.78.  相似文献   

15.
Louisiana barrier islands, such as the chain surrounding the southeast region of the state, are experiencing rapid loss of land area, shoreline erosion, and landward migration due to transgression and in-place drowning, and the landfall of several major hurricanes in the last decade. Observations of migration rates and overall impacts to these barrier islands are poorly understood since they do not respond in a traditional way, such as barrier rollover. This paper aims to verify how wave energy and potential longshore sediment transport trends have influenced the recent evolution of the Chandeleur Islands, by direct comparison with recent observations of migration and erosion trends. The Chandeleur Islands are characterized by a bidirectional transport system, with material moving from the central arc to the flanks. The longshore sediment transport along the barrier islands was calculated after propagation and transformation of waves to breaking (generated using observed winds), and through the use of a common longshore sediment transport formula. Seasonal variations in wind climate produced changes in the transport trends and gradients that agree with migration and rotation patterns observed for this barrier island system. Results suggest that wind dominance produces seasonal oscillations that cause an imbalance in the resulting transport gradients that over time are responsible for higher rates of transport in the northward direction. These results and data from other works verify the evolutionary model previously suggested, and qualitatively confirm the recent observations in asymmetric shoreline erosion.  相似文献   

16.
在三维海洋模式POM基础上建立水质模型,采用中心差分格式、迎风格式以及Smolarkiewicz迎风格式离散物质输运方程.以三维理想水槽中连续源排放的浓度场预测为例,分析3种离散格式求解所得的浓度场.结果表明,3种格式的数值解与解析解的偏差均小于20%.中心差分格式会引起解的震荡,导致物质的反向输移,出现浓度负值.迎风格式能够保证浓度的正值,但该格式带来的数值耗散导致数值解与解析解偏离较大.Smolarkiewicz迎风格式在普通迎风格式基础上引入抗扩散流速,经多次叠代,能有效降低计算中的数值耗散,提高了计算精度.  相似文献   

17.
If wave energy is to become a fully-fledged renewable, its environmental impacts must be fully understood. The objective of the present work is to examine the impact of a wave farm on the beach profile through a case study. The methodology is based on two coupled numerical models: a nearshore wave propagation model and a morphodynamic model, which are run in two scenarios, both with and without the wave farm. Wave data from a nearby coastal buoy are used to prescribe the boundary conditions. A positive effect on the wave climate, the cross-shore sediment transport and, consequently, the evolution of the beach profile itself due to the presence of the wave farm was found. The wave farm leads to a reduction in the erosion of the beach face. This work constitutes the first stage of the investigation of the effectiveness of a wave farm as a coastal defence measure, and the accuracy of the quantification of the erosion reduction will be enhanced in future research. In any case, the overarching picture that emerges is that wave farms, in addition to providing carbon-free energy, can be used as elements of a coastal defence scheme.  相似文献   

18.
In this study an Euler-Euler two-phase model was developed to investigate the tunnel erosion beneath a submarine pipeline exposed to unidirectional flow. Both of the fluid and sediment phases were described via the Navier-Stokes equations, i.e. the model was implemented using time-averaged continuity and momentum equations for the fluid and sediment phases and a modified kε turbulence closure for the fluid phase. The fluid and sediment phases were coupled by considering the drag and lift interaction forces. The model was employed to simulate the tunnel erosion around the pipeline laid on an erodible bed. Comparison between the numerical result and experimental measurement confirms that the numerical model successfully predicts the bed profile and velocity field during the tunnel erosion. It is evident that the sediments are transported as the sheet-flow mode in the tunnel erosion stage. Also the transport rate under the pipe increases rapidly at the early stage and then reduces gradually at the end of the tunnel erosion beneath pipelines.  相似文献   

19.
We point out one problem of the grid advection schemes when used in wave models in coastal areas. The deficiency of the schemes is investigated by means of the ‘third' generation WAM wave model, in which the wave energy is advected by a first order upwind scheme. Two similar, alternative modifications of this scheme are analyzed, the second of which is shown to solve most of the problems encountered with advection along the co-ordinate axes.  相似文献   

20.
《Coastal Engineering》1988,12(2):157-174
Depth-averaged, one-dimensional and two-dimensional numerical models of bed and suspended particulate sediment transport provide unreliable answers for siltation and erosion quantities in situations dominated by three-dimensional flow patterns, as occur in harbour entrances due to flow separation and wind and density currents. Consequently, a numerical scheme has been developed which solves the complete three-dimensional diffusion-advection equation for suspended sediment concentration and thereby makes possible the study of siltation problems in complex, three-dimensional flows. The model analogue is based on a splitting technique and employs a mixed characteristics and finite difference approach. The accuracy and usefulness of the resulting scheme have been investigated by applying it to a number of hypothetical situations and to a laboratory situation involving the transport and dispersal of lightweight sediment. The results of the various tests show that the proposed approach works well and provides a useful basis for the study of practical problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号