首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.  相似文献   

2.
Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.  相似文献   

3.
A method of quantifying the penetration of the Kuroshio into the Luzon Strait is improved with simulated salinity. The new method is applied in an area bounded by 0.6 correlation coefficient contour to the point of 20 N, 118 E which is determined by EOF analysis. The results suggest that the method is suitable for indicating Kuroshio’s intrusion into the South China Sea quantitatively. As an indicator, the Kuroshio penetrating the Luzon index (KLI) reveals obvious annual cycle and weak bimodality. For annual periods, indexes on the surface and subsurface which point the same events have totally opposite signs due to the winter burst of surface westward current. On long-term period, the surface and subsurface indexes have consistent signs. A subsurface index on 150 m avoiding high frequency signals from the surface can be used for indicating long-term Kuroshio intrusion variation. An anti-phase pattern in wavelet coherence map between KLI and Japan large meander index shows that the Luzon Strait is a "smoother" reducing the variability of the Kuroshio transport changes on long-term periods.  相似文献   

4.
Model output from a Pacific basin-wide three-dimensional physical-biogeochemical model during the period of 1991 to 2008 was used to investigate the impact of Kuroshio water on the source water of the southeastern Taiwan Strait. Based on the characteristic salinities of both Kuroshio water and the South China Sea water, a Kuroshio impact index (KII) was designed to measure the degree of impact. The KII correlates significantly with the northeast-southwest component of wind stress, but the former lags the latter by approximately two months. The correlation coefficient between them increases from 0.267 4 to 0.852 9, with a lag time increasing from 0 to 63 days. The impact of Kuroshio Water is greater in winter and spring than in summer and autumn. At the interannual time scale, El Niño and La Niña events play an important role in impacting the KII. During El Niño events, more Kuroshio water contributes to the source water of the southeastern Taiwan Strait. Conversely, during La Niña events, less Kuroshio water contributes to the source water.  相似文献   

5.
<正>The South China Sea(SCS) is a marginal sea connecting the Pacific and Indian oceans and has gained much attention in recent decades. The dynamics in the northeast SCS are considerably influenced by topography, monsoons, tropical cyclones, the Kuroshio intrusion, and water exchange through the Luzon Strait(LS). Recently, an array of 38 current and pressure-recording inverted echo sounders(CPIES) and two moorings are deployed in the northeast SCS from 2016 to 2019(Fig. 1),  相似文献   

6.
The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.  相似文献   

7.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

8.
This study examines a Kuroshio main path(KMP) cut-off event east of Taiwan Island occurred in fall-winter2013–2014 and its impacts on the South China Sea(SCS) by analyzing satellite altimetry and mooring observations. Satellite altimeter sea level anomaly(SLA) images reveal a complete process that a huge cyclonic eddy(CE) from the Pacific collided with the Kuroshio and the western boundary from 15 October 2013 to 15 January 2014. Mooring observations evidenced that the Kuroshio upper ocean volume transport was cut off more than 82% from 17×106 m~3/s in September to 3×106 m~3/s in November 2013. The KMP cut-off event caused the Kuroshio branching and intruding into the SCS and strengthened the eddy kinetic energy in the northern SCS west of the Luzon Strait. Using the total momentum as a dynamic criterion to determine the role of eddy collision with the Kuroshio reasonably explains the KMP cut-off event.  相似文献   

9.
Using observational data of Argos satellite-tracked drifters from 1988 to 2012, we analyzed seasonal characteristics of the surface Kuroshio branch(KB) intrusion into the South China Sea(SCS). The analysis results are as follows.The surface KB originates from the southern Balintang Channel(BLTC) and Babuyan Channel(BBYC). It begins in late September, reaches peak strength in November–December, and declines at the end of March. The mean speed of drifters along the KB path during their traverse of the Luzon Strait(LS) was 43% faster than during the two days before entering the LS for the flow originating from the southern BLTC, but there was a 24% increase in speed for the flow from the BBYC. The observations show that in winter, monthly-mean sea-level anomalies(SLAs) were positive southwest of Taiwan Island and extended to the northern LS. The SLAs were negative northwest of Luzon Island and extended to the southern LS, which acted like a pump, forcing a part of Kuroshio water westward into the SCS. The condition under which the KB forms was solved by a set of simplified motion equations. The results indicate that whether the KB can form depends upon the sea-level gradient at the central LS and region to the west, as well as the location, speed and direction of Kuroshio surface water when it enters the LS.  相似文献   

10.
The wide presence of internal solitary waves (ISWs) in the northern South China Sea (SCS) has been confirmed by both Synthetic Aperture Radar (SAR) images and in situ observations. These ISWs are believed being generated over the varying topography in the Luzon Strait. They typically propagate westwards into the SCS with a diurnal or semidiurnal period. Their generation sites are, however, not yet solidly identified. To obtain a clear picture of the ISWs, we designed numerical experiments to analyze the generation and propagation of the ISWs in the Luzon Strait using a 2-dimensional non-hydrostatic model. The model current is forced by barotropic or baroclinic currents imposed at open boundaries. The experiments show that the tidal current serves as a kind of triggering force for the ISWs over the submarine ridges in the strait. Under the forcing of tidal currents, depressions are formed near the ridges. The ISWs then split from the depressions through a process different from lee-wave generation mechanism. The appearance of the ISWs is influenced by the strength and period of the forcing current:the ISWs are more likely to be generated by a stronger tidal current. That is why the ISWs in the Luzon Strait are frequently observed during spring tide. Compared with diurnal tidal current, the ISWs generated by semidiurnal tidal current with the same amplitude is much more energetic. It is partly because that the wave beams in diurnal frequency have a larger angle with the vertical direction, thus are more likely to be reflected by the topography slope. The impact of the Kuroshio to the ISWs is also analyzed by adding a vertical uniform or shear current at boundaries. A vertically uniform current may generate ISWs directly. On the other hand, a vertically shear current, which is more realistic to represent the Kuroshio branch, seems to have little influence on the generation process and radiating direction of the ISWs in the Luzon Strait.  相似文献   

11.
In this paper, the water waves and wave-induced longshore currents in Obaky coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.  相似文献   

12.
非结构化网格下近岸波生流数值模拟   总被引:5,自引:2,他引:3  
唐军  魏美芳 《海洋学报》2010,32(6):41-46
波浪破碎产生的近岸流是近岸海域关键的水动力因素之一。基于近岸波浪的椭圆型缓坡方程和二维近岸波生流方程,建立了非结构化网格下近岸波浪破碎形成的近岸流数值模型。数值模型中,在空间上采用有限体积法进行数值离散,在时间上采用欧拉向前格式数值离散。数值计算结果表明,该数值模型可以有效地模拟近岸波浪破碎产生的近岸流。  相似文献   

13.
An artificial sand wave on the Dutch shoreface of the North Sea has been studied in conditions with relatively strong tidal currents in the range of 0.5 to 1 m/s and sediments in the medium sand size range of 0.2 to 0.5 mm. The sand wave is perpendicular to the tidal current and has a maximum height and length of the order of 5 m and 1 km, respectively. The sand wave is dynamically active and shows migration rates of the order of a few metres per year. A numerical morphodynamic model (DELFT3D model) has been used to simulate the morphological behaviour of the sand wave in the North Sea. This model approach is based on the numerical solution of the three-dimensional shallow water equations in combination with a surface wave propagation model (wind waves) and the advection–diffusion equation for the sediment particles with online bed updating after each time step. The model results show that the sand wave grows in the case of dominant bed-load transport (weak tidal currents; relatively coarse sediment; small roughness height; low waves) and that the sand wave decays in the case of dominant suspended transport (strong currents, relatively fine sediment, large roughness height; storm waves).  相似文献   

14.
I~crIOWIn the coastal area, especially at the sandy seashore, wave and nearshore current are the major factors which affect sediment transPOrt and the motyhChdynamics.The numerical models of predicting the beach evolution can be classified intO the medi~term and long-term models according to their space and time scales (De Briend et al., 1993;Watanabe, 1990; Watanabe et al., 1986; Tao, 1996). In the medium-term model the effects ofwave, nearshore current and sediment transport are conside…  相似文献   

15.
实施人工岬角和海滩养护的软硬措施相结合的方法是探索解决海滩侵蚀问题的新举措之一。基于验证良好的水动力模型建立了泥沙输运和海床演变模型,对秦皇岛市新开河口至南山岸线海滩经整治修复工程实施后的泥沙输运和海床演变规律进行模拟分析。结果表明:大潮与常浪耦合作用下,研究区域周围海域流速整体上落急时刻大于涨急时刻,沙坝掩护水域的流速较弱,波浪在沙坝处增强并在沙坝后破碎并减弱;在沙坝处出现高悬沙浓度区域,悬沙浓度分布主要由底床切应力控制,部分受水动力影响。大潮与强浪耦合作用下,在沙坝处出现远大于常浪时的增强水流(波生流),方向与强浪向一致,波浪在沙坝处已破碎且沙坝对强浪的削减效率大于常浪;与常浪作用下不同,悬沙浓度场在强浪作用下沙坝处没有出现明显的高浓度区域。波流耦合作用下,人工岬角单独存在时护岸效果有限,工程实施后在人工岬角和人工沙坝的配合下,沙坝处侵蚀而沙坝后侧掩护区域淤积,沙坝起到了有效养护海滩的作用。  相似文献   

16.
A numerical model was developed of beach morphological evolution in the vicinity of coastal structures. The model includes five sub-models for random wave transformation, surface roller development, nearshore wave-induced currents, sediment transport, and morphological evolution. The model was validated using high-quality data sets obtained during experiments with a T-head groin and a detached breakwater in the basin of the Large-scale Sediment Transport Facility at the Coastal and Hydraulics Laboratory in Vicksburg, Miss, USA. The simulations showed that the model reproduced well the wave conditions, wave-induced currents, and beach morphological evolution in the vicinity of coastal structures. Both salient and tombolo formation behind a T-head groin and a detached breakwater were simulated with good agreement compared to the measurements.  相似文献   

17.
长江河口波-流共同作用下的全沙数值模拟   总被引:15,自引:1,他引:15  
针对长江河口地形、水文、泥沙运动等复杂的特点,建立了波-流共同作用下的二维全沙及河床演变模型.在合理计算研究区域流场等的基础上,利用切应力概念确定悬沙扩散方程中的源函数;通过系列数值试验和实测资料的统计分析,在经典的泥沙临界起动速度中引入反映河床底质结构及固结程度的局地系数;选用由流速、盐度、含沙量浓度确定的泥沙颗粒絮凝沉降速度,从而提高长江口悬沙场数值模拟精度.在底沙输运计算中,提出一种较为合理确定有关参数的方法.通过洪、枯季大、中、小潮水文、泥沙资料和典型台风引起航槽冲淤变化的实测资料验证,表明该文提出的模型能较合理地反映长江河口流场、泥沙场及地形的演变.  相似文献   

18.
A simulation of suspended sediment movement relating to tidal and wave forcing during a winter monsoon in November 1983 in the Huanghai and East China Seas continental shelf is attempted by using the model describing the cohesive/non-cohesive sediment resuspension generated by interactions between currents and waves.model simulation showed that sediment concentration was increased by resuspension at shallow depths during the strong storm conditions due to high bottom stress interacted between currents and waves. This result is in general agreement with observations in horizontal distribution of suspended sediment distribution.At three current meter mooring positions off the southern Shandong Peninsula resuspension occurred only at a depth of 22m,nearest coastal position and at deeper parts at depths of 51 and 80m wave-current interaction effects were not significant. It has shown that the present model simulation demonstrated the capability of reproduction of suspended sediment movement under wintertime extreme event reasonably well.  相似文献   

19.
对于粉沙淤泥质河口和海岸,海底泥沙受潮流作用主要以悬沙形式输运。在这样的海区建港与疏浚航道,需要首先进行泥沙淤积问题的研究。本文采用潮流作用下不平衡方程式、挟沙能力公式和起动流速公式,建立了潮流作用下河口悬沙运动二维数学模型,在对二维悬沙不平衡输沙方程和海底变形方程进行离散时直接采用显式迎风格式,得到了较好的结果。在此基础上,将该模型应用于实际水域,结果表明,该数学模型能够模拟河口的悬沙运动规律和冲淤变化,对于水流较大的海域该模型有一定的应用价值  相似文献   

20.
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号