首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—?A new approach is proposed to the seismic hazard estimate based on documentary data concerning local history of seismic effects. The adopted methodology allows for the use of “poor” data, such as the macroseismic ones, within a formally coherent approach that permits overcoming a number of problems connected to the forcing of available information in the frame of “standard” methodologies calibrated on the use of instrumental data. The use of the proposed methodology allows full exploitation of all the available information (that for many towns in Italy covers several centuries) making possible a correct use of macroseismic data characterized by different levels of completeness and reliability. As an application of the proposed methodology, seismic hazard estimates are presented for two towns located in Northern Italy: Bologna and Carpi.  相似文献   

2.
We present the results of probabilistic seismic hazard assessment for Iceland in the framework of the EU project UPStrat-MAFA using the so-called site approach implemented in the SASHA computational code. This approach estimates seismic hazard in terms of macroseismic intensity by basically relying on local information about documented effects of past seismic events in the framework of a formally coherent and complete treatment of intensity data. In the case of Iceland, due to the lack of observed intensities for past earthquakes, local seismic histories were built using indirect macroseismic estimates deduced from epicentral information through an empirical attenuation relationship in probabilistic form. Seismic hazard was computed for four exceedance probabilities for an exposure time of 50 years, equivalent to average return periods of 50, 200, 475 and 975 years. For some localities, further return periods were examined and deaggregation analysis was performed. Results appear significantly different from previous seismic hazard maps, though just a semi-qualitative comparison is possible because of the different shaking measure considered (peak ground acceleration versus intensity), and the different computational methodology and input data used in these studies.  相似文献   

3.
Estimates of site seismicity rates using ill-defined macroseismic data   总被引:2,自引:0,他引:2  
A new approach to the problem of site seismic hazard analysis is proposed, based on intensity data affected by uncertainties. This approach takes into account the ordinal and discrete character of intensities, trying to avoid misleading results due to the assumption that intensity can be treated as a real number (continuous distribution estimators, attenuation relationships, etc.). The proposed formulation is based on the use of a distribution function describing, for each earthquake, the probability that site seismic effects can be described by each possible intensity value. In order to obtain site hazard estimates where local data are lacking, the dependence of this distribution function with the distance from the macroseismic epicenter and with epicentral intensity is examined. A methodology has been developed for the purpose of combining such probabilities and estimating site seismicity rates which takes into account the effect of uncertainties involved in this kind of analysis. An application of this approach is described and discussed.  相似文献   

4.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

5.
In the frame of the UPStrat-MAFA “Urban Disaster Prevention Strategies Using MAcroseismic Fields and FAult Sources” project, seismic hazard has been assessed in Portugal in terms of macroseismic intensity. Assessment has been performed by using a probabilistic approach based on the statistical analysis of local seismic histories (i.e., the record of seismic effects at each locality) performed by a new version of the SASHA code (D’Amico and Albarello in Res Lett 79(5):663–671, 2008) on purpose modified to account for this specific area of study. Local seismic histories are reconstructed by considering documented effects or indirect estimates deduced from epicentral information or numerical simulations. All these pieces of evidence are combined taking into account relevant uncertainty and statistical completeness of information locally available. Distribution of expected maximum intensity (i.e., the maximum intensity characterized by a fixed exceedance probability for a exposure time of 50 years) has been obtained and compared with the one deduced from alternative approaches.  相似文献   

6.
In the process of updating existing PSHA maps in Central Asia, a first step is the evaluation of the seismic hazard in terms of macroseismic intensity by applying a data driven method. Following the Site Approach to Seismic Hazard Assessment (SASHA) [11], the evaluation of the probability of exceedance of any given intensity value over a fixed exposure time, is mainly based on the seismic histories available at different locations without requiring any a-priori assumption about seismic zonation. The effects of earthquakes not included in the seismic history can be accounted by propagating the epicentral information through a Intensity Prediction Equation developed for the analyzed area. In order to comply with existing building codes in the region that use macroseismic intensity instead of PGA, we evaluated the seismic hazard at 2911 localities using a macroseismic catalog composed by 5322 intensity data points relevant to 75 earthquakes in the magnitude range 4.6–8.3. The results show that for most of the investigated area the intensity having a probability of at least 10% to be exceeded in 50 years is VIII. The intensity rises to IX for some area struck by strong earthquakes in the past, like the Chou-Kemin-Chilik fault zone in northern Tien-Shan, between Kyrgyzstan and Kazakhstan, or in Gissar range between Tajikistan and Uzbekistan. These values are about one intensity unit less than those evaluated in the Global Seismic Hazard Assessment Program (GSHAP; Ulomov, The GSHAP Region 7 working group [29]). Moreover, hazard curves have been extracted for the main towns of Central Asia and the results compared with the estimates previously obtained. A good agreement has been found for Bishkek (Kyrgyzstan) and Dushanbe (Tajikistan), while a lower probability of occurrence of I=VIII has been obtained for Tashkent (Uzbekistan) and a larger one for I=IX in Almaty (Kazakhstan).  相似文献   

7.
In all European countries the will to conserve the building heritage is very strong. Unfortunately, large areas in Europe are characterised by a high level of seismic hazard and the vulnerability of ancient masonry structures is often relevant. The large number of monumental buildings in urban areas requires facing the problem with a methodology that can be applied at territorial scale, with simplified models which need little easily obtainable, data. Within the Risk-UE project, a new methodology has been stated for the seismic vulnerability assessment of monumental buildings, which considers two different approaches: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. Both models can be used with data of different reliability and depth. This paper illustrates the theoretical basis and defines the parameters of the two models. An application to an important church is presented.  相似文献   

8.
In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimated adopting a novel probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be adopted for building damage scenarios. Additionally, site effects, evaluated in a previous work through amplification factors of Housner intensity, have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between Housner and EMS-98 macroseismic intensity has been developed. This relationship has been used to convert the probability mass functions of Housner intensity obtained from synthetic seismograms amplified by the site effects coefficients into probability mass function of EMS-98 intensity. Finally, the Damage Probability Matrices have been applied to estimate the damage levels of the residential buildings located in the urban area of Potenza. The proposed methodology returns the full probabilistic distribution of expected damage, thus avoiding average damage index or uncertainties expressed in term of dispersion indexes.  相似文献   

9.
This study analyses the performance of residential buildings in the town of Hveragerði in South Iceland during the 29 May 2008 Mw 6.3 Ölfus Earthquake. The earthquake occurred very close to the town, approximately 3–4 km from it. Ground shaking caused by the earthquake was recorded by a dense strong-motion array in the town. The array provided high-quality three-component ground acceleration data which is used to quantify a hazard scenario. In addition, surveys conducted in the town in the aftermath of the earthquake have provided information on macroseismic intensity at various locations in the town. Detailed information regarding the building stock in the town is collected, and their seismic vulnerability models are created by using building damage data obtained from the June 2000 South Iceland earthquakes. Damage to buildings are then simulated by using the scenario hazard and vulnerability models. Damage estimates were also obtained by conducting a survey. Simulated damage based on the scenario macroseismic intensity is found to be similar to damage estimated from survey data. The buildings performed very well during the earthquake—damage suffered was only 5 % of the insured value on the average. Correlation between actual damage and recorded ground-motion parameters is found to be statistically insignificant. No significant correlation of damage was observed, even with macroseismic intensity. Whereas significant correlation was observed between peak ground velocity and macroseismic intensity, neither of them appear to be good indicators of damage to buildings in the study area. This lack of correlation is partly due to good seismic capacity of buildings and partly due to the ordinal nature of macroseismic intensity scale. Consistent with experience from many past earthquakes, the survey results indicate that seismic risk in South Iceland is not so much due to collapse of buildings but rather due to damage to non-structural components and building contents.  相似文献   

10.
—A new methodology for probabilistic seismic hazard analysis is described. The approach combines the best features of the "deductive" (Cornell, 1968) and "historic" (Veneziano et al., 1984) procedures. It can be called a "parametric-historic" procedure. The maximum regional magnitude mmax is of paramount importance in this approach and Part I of the authors’ work (Kijko and Graham, 1998) was dedicated to developing efficient statistical procedures that can be used for the evaluation of this parameter. In Part II the approach of a probabilistic seismic hazard assessment at a given site is described. The approach permits the utilization of incomplete earthquake catalogues. It is assumed that a typical catalogue contains two types of information historical macroseismic events that occurred over a period of a few hundred years and recent, instrumental data. The historical part of the catalogue contains only the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. The author’s approach also takes into account uncertainty in the determination of the earthquake magnitude. The technique has been developed specifically for the estimation of seismic hazard at individual sites, without the subjective judgment involved in the definition of seismic source zones, in which specific active faults have not been mapped and identified, and where the causes of seismicity are not well understood. As an example of the application of the new technique, the results of a typical hazard analysis for a hypothetical engineering structure located in the territory of South Africa are presented. It was assumed that the only reliable information in the assessment of the seismic hazard parameters in the vicinity of the selected site comes from a knowledge of past seismicity. The procedure was applied to seismic data that were divided into an incomplete part, containing only the largest events, and two complete parts, containing information obtained from instruments. The simulation experiments described in Part I of our study have shown that the Bayesian estimator K-S-B tends to perform very well, especially in the presence of inevitable deviations from the simple Gutenberg–Richter model. In the light of this fact value &gif1; = 6.66 - 0.44, which was obtained from the K-S-B technique, was regarded as the best choice. At an exceedance probability of 10х per annum, the median value of peak ground acceleration on rock at the site is 0.31g, and at an exceedance probability of 10ц per annum, the median peak ground acceleration at the site is 0.39g. The median value of the maximum possible acceleration at the site is 0.40g, which was calculated from attenuation formulae by assuming the occurrence of the strongest possible earthquake, e.g., with magnitude &gif1; = 6.66 at distance 10 km.  相似文献   

11.
--A study of the intensity distribution of the earthquake of December 5th 1456, which affected a large area of central and southern Italy was carried out, verifying, through a recently proposed methodology, the two hypotheses assumed by different authors for one single seismic event and three distinct and close ones. This methodology is based on a vectorial modelling of the macroseismic intensity distribution which aims at determining the epicentre and the principal (minimum and maximum) attenuation directions.¶The study was structured, considering each of the two assumed hypotheses, in a set of tests obtained for the macroseismic field and the intensity map, by analysing different configurations of the observed intensity distribution.¶The results obtained are in agreement with the hypothesis of the time coexistence of three distinct seismic events, for which the calculated epicentres and the principal attenuation directions are compatible with the observed intensity distribution and with the tectonic trend of the Apennine region, respectively.  相似文献   

12.
Further information on the macroseismic field in the Balkan area   总被引:1,自引:0,他引:1  
Papazachos and Papaioannou (1997) (called PP97 hereinafter) studied the macroseismic field in the Balkan area (Greece, Albania, former Yugoslavia, Bulgaria and western Turkey) with the purpose of deriving attenuation and scaling relations useful for seismic hazard assessment and study of historical earthquakes. In his comment, Trifunac suggests that our analysis might exhibit certain bias for all countries except Greece due to problems mainly associated with the database (completeness, etc.), conversion of local intensity scales used in the Balkan countries, as well as to the local variations of the attenuation relation due to the variation of the geotectonic environment in this area. Specifically, his most important comments can be summarized as follows: a) The large participation of Greek data probably biased the scaling relations proposed in the study. b) The conversion relations used between local macroseismic scales are less accurate than their proposed such relations. c) The variation of attenuation (geometrical and anelastic) in different regions of the study area is important and local relations (instead of the proposed single relation) should be determined for seismic hazard assessment. In the following, we study in detail each of these possible bias sources. Additional work on the macroseismic field of the Balkan area shows that none of the previously described factors, suggested by Trifunac, introduces bias in the results presented by PP97. Specifically, it is shown that the database used by PP97 fulfills the basic requirements for a reliable determinations of attenuation and scaling relations proper for seismic hazard assessment in all five countries of this area. Evidence is presented that no strong geographical variation of the attenuation of macroseismic intensities of shallow earthquakes is observed. Relations between local version of intensity scales suggested by Shebalin et al. (1974) are shown to be reliable. Finally, it is demonstrated that national practices for estimation of macroseismic intensities may affect the results of seismic hazard assessment but proper formulation can be applied (PP97) which allows to take into account such differences in national practices. This formulation allows also to introduce and correct for anisotropic radiation at the seismic source as well as the incorporation of site effects.  相似文献   

13.
Comparison between accelerometric and macroseismic observations is made for three M w?=?4.5 earthquakes, which occurred in north-eastern France and south-western Germany in 2003 and 2004. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 and 180 km from the epicentres. Macroseismic data are based on French Internet reports. In addition to the single questionnaire intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions bearing different physical meanings: (1) “vibratory motions of small objects”, (2) “displacement and fall of objects”, (3) “acoustic noise” and (4) “personal feelings”. Best correlations between macroseismic and instrumental observations are obtained when the macroseismic parameters are averaged over 10-km-radius circles around each station. Macroseismic intensities predicted by published peak ground velocity (PGV)–intensity relationships agree with our observed intensities, contrary to those based on peak ground acceleration (PGA). Correlation between the macroseismic and instrumental data for intensities between II and V (EMS-98) is better for PGV than for PGA. Correlation with the response spectra exhibits clear frequency dependence for all macroseismic parameters. Horizontal and vertical components are significantly correlated with the macroseismic parameters between 1 and 10 Hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 Hz, a clear lack of correlation between macroseismic and instrumental observations exists. It could be due to a combination of the decrease in the energy signal above 10 Hz, a high level of anthropogenic noise and an increase in variability in soil conditions. Above 25 Hz, the correlation coefficients between the acceleration response spectra and the macroseismic parameters are close to the PGA correlation level.  相似文献   

14.
—?The problem of accounting for local soil effect on earthquake ground motion is especially urgent when assessing seismic hazard – recent needs of earthquake engineering require local site effects to be included into hazard maps. However, most recent works do not consider the variety of soil conditions or are performed for generalized site categories, such as “hard rock,”“soft soil” or “alluvium.” A technique of seismic hazard calculations on the basis of the Fourier Amplitude Spectra recently developed by the authors allows us to create hazard maps involving the influence of local soil conditions using soil/bedrock spectral ratios. Probabilistic microzoning maps may be constructed showing macroseismic intensity, peak ground acceleration, response and design spectra for various return periods (probability of exceedance), that allow optimization of engineering decisions. An application of this approach is presented which focused on the probabilistic microzoning of the Tashkent City.  相似文献   

15.
It is proposed that some possible macroseismic epicenters can be determined quickly from the relationship that the microseismic epicenters located by instruments bear with faults.Based on these so-called macroseismic epicenters,we can make fast seismic hazard estimation after a shock by use of the empirical distribution model of seismic intensity.In comparison with the method that uses the microseismic epicenters directly,this approach can increase the preccision of fast seismic hazard estimation.Statistical analysis of 133 main earthquakes in China was made.The result shows that the deviation distance between the microseismic epicenter and macroseismic epicenter falls within the range of 35km for 88% earthquakes of the total and within the range of 35to 75km for the remaining ones.Then,we can take the area that has the microseismic epicenter as its center and is 35km in radius as the area for emphatic analysis,and take the area within 75km around the microseismic epicenter as the area for general analysis.The relation between the 66 earthquake cases on the N-S Seismic Belt in China and the spatial distribution characteristics of faults and the results of focal mechanism solution were analyzed in detail.We know from the analysis that the error of instrumental epicenter determination is not the only factor that gives effects to the deviation of the macroseismic epicenter.In addiditon to it,the fault size,fault distribution,fault activity,fault intersection types,earthquake magnitude,etc,are also main affecting factors.By sorting out ,processing and analyzing these affecting factors,the principle and procedures for quickly determining the possible position of the macroseismic epicenter were set up.Taking these as a basis and establishing a nationwide database of faults that contains relevant factors,it is possible to apply this method in practical fast estimation of seismic hazard.  相似文献   

16.
In the framework of the UPStrat-MAFA project, a seismic hazard assessment has been undertaken in the volcanic region of Mt. Etna as a first step in studies aimed at evaluating the risk on an urban scale. The analysis has been carried out with the SASHA code which uses macroseismic data in order to calculate, starting from the site seismic history, the maximum intensity value expected in a given site with a probability of exceedance of 10 % (Iref), for a fixed exposure time. Depending on the aims of the project, hazard is estimated for local volcano-tectonic seismicity and short exposure times (10 and 30 years), without taking into account the contribution of “regional” events characterized by much longer recurrence times. Results from tasks A, B and D of the project have produced an updated macroseismic dataset, better performing attenuation models and new tools for SASHA, respectively. The maps obtained indicate that the eastern flank of Etna, the most urbanized sector of the volcano, is characterized by a high level of hazard with Iref values up to degree VIII EMS, and even IX EMS locally. The disaggregated data analysis allows recognizing the “design earthquake” and the seismogenic fault which most contribute to the hazard at a site-scale. The latter analysis is the starting point to select the scenario earthquake to be used in the analyses of tasks C and F of the project dealing with, respectively, synthetic ground motion simulations and the evaluation of the Disruption Index.  相似文献   

17.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

18.
A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.  相似文献   

19.
This study develops a framework to evaluate ground motion selection and modification (GMSM) procedures. The context is probabilistic seismic demand analysis, where response history analyses of a given structure, using ground motions determined by a GMSM procedure, are performed in order to estimate the seismic demand hazard curve (SDHC) for the structure at a given site. Currently, a GMSM procedure is evaluated in this context by comparing several resulting estimates of the SDHC, each derived from a different definition of the conditioning intensity measure (IM). Using a simple case study, we demonstrate that conclusions from such an approach are not always definitive; therefore, an alternative approach is desirable. In the alternative proposed herein, all estimates of the SDHC from GMSM procedures are compared against a benchmark SDHC, under a common set of ground motion information. This benchmark SDHC is determined by incorporating a prediction model for the seismic demand into the probabilistic seismic hazard analysis calculations. To develop an understanding of why one GMSM procedure may provide more accurate estimates of the SDHC than another procedure, we identify the role of ‘IM sufficiency’ in the relationship between (i) bias in the SDHC estimate and (ii) ‘hazard consistency’ of the corresponding ground motions obtained from a GMSM procedure. Finally, we provide examples of how misleading conclusions may potentially be obtained from erroneous implementations of the proposed framework. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
For the seismic hazard evaluation of the region including the southern Calabro-Peloritanian Arc and southeastern Sicily, the determination of the macroseismic virtual intensity distributions has been carried out, characteristic of the seismogenic zones that fall within the area in study, starting with the structural framework of the region and from the analysis of the observed intensity effected through suitable filters. The macroseismic parameters, derived from such virtual distributions and used for seismic hazard evaluation, are not only a reference for eventual subsequently deeper knowledge referable to the need for a better characterization of the reference modelling, but distinguish themselves as an essential instrument for the definition of seismic hazard scenarios correlated to seismic events that take place in single seismogenic zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号